Preview

iPolytech Journal

Advanced search

EXPERIMENTAL STUDIES OF INCLINED WHEEL RADIAL STIFFNESS

https://doi.org/10.21285/1814-3520-2018-8-173-180

Abstract

PURPOSE. The article presents the procedure, experimental study results, and calculated experimental universal dependence obtained for calculating the radial stiffness of an inclined wheel. METHODS. An experimental technique has been developed to determine the radial stiffness of an inclined wheel tire. The authors carried out the experiments using a device specially designed at the Department of Vehicle Technical Operation and Repair of the Volgograd State Technical University. RESULTS AND THEIR DISCUSSION. A correction factor has been obtained to recalculate the radial stiffness of a vertical wheel to the radial stiffness of the inclined wheel at any value of the inclination angle α. These researches provide the data on the variation of the factor of tire radial stiffness depending on its inclination angle and can be used for the selection of vehicle chassis parameters in order to improve its controllability and stability. CONCLUSIONS. It has been determined that when the wheel is inclined regardless of the direction of inclination within the permissible values for tire operating conditions and preserving its wear resistance (up to 50), the factor of radial stiffness of the tire decreases up to 20%. The study has resulted in obtaining a correction factor for recalculating the radial stiffness of the vertical wheel into the radial stiffness of the inclined wheel at any value of its inclination angle α. The obtained new knowledge about the value of the tire radial stiffness allows more accurate modeling of vehicle stability and controllability.

About the Authors

E. V. Balakina
Volgograd State Technical University
Russian Federation


A. Sh. Barasov
Volgograd State Technical University
Russian Federation


A. M. Gavrilov
Volgograd State Technical University
Russian Federation


A. D. Morozko
Volgograd State Technical University
Russian Federation


D. S. Sarbaev
Volgograd State Technical University
Russian Federation


A. N. Todorev
Volgograd State Technical University
Russian Federation


N. S. Tyukin
Volgograd State Technical University
Russian Federation


References

1. Автомобили. Качение колеса. Термины и определения [Электронный ресурс]. URL:http://gostexpert.ru/data/files/1769772/bcad04dbc17df32968c4f5efae2d4d29.pdf (12.05.2018).

2. Балабин И.В., Путин В.А., Чабунин И.С. Автомобильные и тракторные колеса и шины. М.: МГТУ «МАМИ», 2012. 919 с.

3. Балакина Е.В., Козлов Ю.Н., Тодорев А.Н. Изменение углов конструктивного наклона колес при движении легкового автомобиля // Автомобильная промышленность. 2016. № 12. C. 16-19.

4. Балакина Е.В., Кочетков А.В. Коэффициент сцепления шины с дорожным покрытием. М.: Инновационное машиностроение, 2017. 292 с.

5. Балакина Е.В., Козлов Ю.Н. Наклон колеса в поперечной вертикальной плоскости и его влияние на увод автомобиля // Автомобильная промышленность. 2012. № 8. C. 15-19.

6. Балакина Е.В., Зотов Н.М. Определение взаимного расположения сил, реакций и зон трения в пятне контакта эластичного колеса с твердой поверхностью // Трение и износ. 2015. Т. 36. № 1. C. 36-40.

7. Кнороз В.И. Работа автомобильной шины. М.: Изд-во Транспорт. 1976. 283 с.

8. Сальников В.И., Барашков А.А., Задворнов В.Н., Балакина Е.В. Расчетно-экспериментальные универсальные зависимости для определения радиальной жесткости шин // Автомобильная промышленность. 2014. № 7. C. 13-14.

9. Яценко Н.Н., Никульников Э.Н., Балакина Е.В., Козлов Ю.Н. Отрицательный развал задних колес и управляемость легкового автомобиля // Автомобильная промышленность. 2008. № 10. С. 22-23.

10. Ivković I. Dynamic friction in the braking, tire-road contact. Materials of International Conference on Traffic and Transport Engineering. Belgrade, 2014. P. 420-430.

11. Khaleghian Seyedmeysam. A technical survey on tire-road friction estimation. Friction. 2017. Vol. 5. No. 2. P. 123-146.

12. Minca Cr. The determination and analysis of tire contact surface geometric parameters. Review of the Air Force Academy. 2015. No 1. P. 149-154.

13. Mohamed El-Nashar. Vehicle Tire Road Forces. Deutschland, LAP LAMBERT Academic Publishing. 2010. 212 p.

14. Morris de Beer. Tyre - pavement interface contact stresses on flexible pavements - quo vadis? Materials of 8th Conference on asphalt pavements for Southern Africa, June 2012, 22 p.

15. Pacejka H.B. Tire and Vehicle Dynamics. Published by Elsevier Ltd, USA, 2012. 672 p.

16. Reza N. Jazar Vehicle Dynamics: Theory and Application. Springer Science + Business Media, LLC. 2008. 1015 p.

17. Seyedmeysam Kh. A technical survey on tire-road friction estimation. Friction. 2017. Vol. 5. No. 2. P. 123-146.

18. Svendenius Jakob. Tire Modeling and Friction Estimation. Department of Automatic Control Lund University, Lund, Sweden, 2007. 194 p.

19. The Pneumatic Tire. National Highway Traffic Safety Administration, 2006. 701 p.

20. Woodward David et al. The static contact patch of some friction measuring devices / Materials of 4th International Safer Roads Conference, Cheltenham, United Kingdomю. 2014. 13 p.


Review

For citations:


Balakina E.V., Barasov A.Sh., Gavrilov A.M., Morozko A.D., Sarbaev D.S., Todorev A.N., Tyukin N.S. EXPERIMENTAL STUDIES OF INCLINED WHEEL RADIAL STIFFNESS. Proceedings of Irkutsk State Technical University. 2018;22(8):173-180. (In Russ.) https://doi.org/10.21285/1814-3520-2018-8-173-180

Views: 214


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)