Preview

iPolytech Journal

Advanced search

MATHEMATICAL MODEL OF PREISACH THEORY-BASED MAGNETIC HYSTERESIS

https://doi.org/10.21285/1814-3520-2018-8-104-113

Abstract

PURPOSE. As the complexity of electric power systems (EPS) constantly increases, the task of ensuring adequate operation of relay protection devices (RP) is becoming more and more relevant. To solve it the authors propose to use the detailed mathematical models of the combination of measuring transformers of relay protection together with modern EPS simulators. The adequate modeling of measuring transformers is very important, in particular, the core magnetization process, since measuring transformers in many respects determine the shape of the controlled signal of relay protection and affect its operation. However, the absence of an accurate mathematical description of the characteristics of measuring transformer core magnetization leads to the use of simplified models which do not reflect all processes in the core. The purpose of the work is development of a mathematical model of hysteresis featuring high reproduction accuracy of transformer core magnetization reversal processes. METHODS. The main research method is mathematical modeling of ferromagnetic material magnetization reversal. The research is performed using the MathCAD software package. RESULTS AND THEIR DISCUSSION. The article presents the fragments of development and study of a mathematical model with a magnetic hysteresis memory based on the Preisach theory, which reproduces both major and minor hysteresis loops with high accuracy. CONCLUSIONS. The analysis of existing mathematical models of current transformers allowed to identify the most promising approach for describing the magnetization process i.e. Preisach theory, which, due to the complexity of its implementation is not used in widely spread software and hardware/software complexes. A mathematical model of a hysteresis with the memory of matter state has been developed on the basis of the Preisach theory for describing the magnetic hysteresis process. The preliminary studies of the model confirmed the correctness of model operation.

About the Authors

M. V. Andreev
National Research Tomsk Polytechnic University
Russian Federation


M. V. Spitsa
National Research Tomsk Polytechnic University
Russian Federation


A. V. Kievets
National Research Tomsk Polytechnic University
Russian Federation


References

1. Hermann W. Dommel. Digital computer solution of electromagnetic transients in single- and multiphase networks // IEEE Transactions on Power Apparatus and Systems. 1969. Vol. 88. No. 4. P. 388-399.

2. Матюк В.Ф., Осипов А.А. Математические модели кривой намагничивания и петель магнитного гистерезиса. Ч. I. Анализ моделей // Неразрушающий контроль и диагностика. 2011. № 2. С. 3-35.

3. Deane J.H.B. Modeling the dynamics of nonlinear inductor circuits. IEEE Transactions on Magnetics. 1994. Vol. 30. Issue 5. P. 1-13.

4. Наумов В.А, Шевцов В.М. Математические модели трансформатора тока в исследованиях алгоритмов дифференциальных защит // Электрические станции. 2003. № 3. С. 51-56.

5. Новаш И.Ф., Румянцев Ю.Ф. Упрощенная модель трехфазной группы трансформаторов тока в системе динамического моделирования // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2015. № 5. С. 23-38.

6. Король Е.Г. Анализ методов моделирования петли гистерезиса ферромагнитных материалов // Електротехніка і Електромеханіка. 2007. № 6. C. 44-47.

7. Preisach F., Fur Z. Phys. 94, 277 (1935).

8. Eichler Ja., Novák M., Košek M. Differences between Preisach Model and Experiment for Soft Ferromagnetic Materials, Effect of Instrument Accuracy // IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM). 2017.

9. Willerich S., Herzog H.-G. Interpretation of an Energy Based Hysteresis Model as a Scalar Preisach Operator // IEEE Conference on Electromagnetic Field Computation (CEFC). 2016. P. 13.

10. Tousignant M., Sirois F., Kedous-Lebouc A. Identification of the Preisach Model Parameters Using Only The Major Hysteresis Loop and The Initial Magnetization Curve // IEEE Conference on Electromagnetic Field Computation (CEFC). 2016. P. 11.

11. Anooshahpour F., Polushin I.G., Patel R.V. Classical Preisach Model of Hysteretic Behavior in a da Vinci Instrument // IEEE International Conference on Advanced Intelligent Mechatronics (AIM). 2016. P. 1392-1397.

12. Eichler J., Novák M., Košek M. Experimental-numerical method for identification of weighting function in Preisach model for ferromagnetic materials // International Conference on Applied Electronics (AE). 2016.

13. Eichler J., Novák M., Košek M. Implementation of the first order reversal curve method for identification of weight function in Preisach model for ferromagnetics // ELEKTRO. 2016. P. 602-607.

14. Zsurzsan T.-G., Andersen M.A.E., Zhe Zhang, Andersen N.A. Preisach model of hysteresis for the Piezoelectric Actuator Drive // IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. 2015. P. 2788-2793.

15. Wawrzała P. Application of a Preisach hysteresis model to the evaluation of PMN-PT ceramics properties // Archives of metallurgy and materials. 2013. Vol. 58.

16. Андреев М.В., Боровиков Ю.С., Сулайманов А.О. Средства всережимного моделирования дифференциальных защит трансформаторов в электроэнергетических системах // Известия высших учебных заведений. Электромеханика. 2015. № 4. С. 63-67.

17. Андреев М.В., Боровиков Ю.С. Оптимизация уставок дифференциальных защит трансформаторов и автотрансформаторов с помощью их адекватных математических моделей // Современные проблемы науки и образования. 2013. № 3. С. 53.

18. Андреев М.В., Рубан Н.Ю., Гордиенко И.С., Боровиков Ю.С., Гусев А.С., Сулайманов А.О. Всережимное математическое моделирование релейной защиты электроэнергетических систем. Томск: Изд-во Томского политехнического университета, 2016. 180 с.

19. Суворов А.А., Гусев А.С., Сулайманов А.О., Андреев М.В. Проблема верификации средств моделирования электроэнергетических систем и концепция ее решения // Вестник Ивановского государственного энергетического университета. 2017. № 1. С. 11-23.

20. Боровиков Ю.С., Гусев А.С., Андреев М.В., Уфа Р.А. Полигон для отработки решений по построению активно-адаптивных сетей на базе всережимного моделирующего комплекса реального времени // Научные проблемы транспорта Сибири и Дальнего Востока. 2014. № 4. С. 292-296.


Review

For citations:


Andreev M.V., Spitsa M.V., Kievets A.V. MATHEMATICAL MODEL OF PREISACH THEORY-BASED MAGNETIC HYSTERESIS. Proceedings of Irkutsk State Technical University. 2018;22(8):104-113. (In Russ.) https://doi.org/10.21285/1814-3520-2018-8-104-113

Views: 362


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)