Preview

iPolytech Journal

Advanced search

POWDER MATERIAL BASED ON MECHANOCHEMICALLY ACTIVATED CHIP POWDER D16 WITH ADDED FERROTITANIUM

https://doi.org/10.21285/1814-3520-2018-6-213-221

Abstract

The PURPOSE of the paper is determination of the influence regularities of mechanochemical activation parameters on the particle size and properties of hot-deformed powder materials (HDPM) that are based on activated chip powder D16 with the addition of ferrotitanium. METHODS. Combined mechanochemical activation of chip D16 and ferrotitanium was carried out in the saturated aqueous solution of boric acid (SASBA) in a planetary ball mill SAND-1 at different processing times and grinding rates. The particle size distribution of charge followed by its processing in a hand mixer was studied and the agglomeration parameter was determined. The resulting charge was divided into fractions; one part was mixed with aluminum powder; subjected to cold moulding followed by short-term heating and forming. Hardness, ultimate shear strength and ultimate bending strength of hot-deformed powder materials were also determined. RESULTS AND THEIR DISCUSSION. 3D spline models of the activated chip powder (ACP) yield dependence on grinding time and rate have been constructed. Introduction of 30% saturated aqueous solution of boric acid of the charge weight into the grinding media provides better grinding estimated by the amount of yield of the activated chip powder. Using Rosin-Rammler equation the correspondence to the normal distribution law has been revealed for the particles of this charge. The integral curves of particle size distribution after the mechanochemical activation and manual processing have been constructed. CONCLUSIONS. The optimal parameters of mechanochemical activation are determined. They provide a higher yield of the activated chip powder. The resulting charge is characterized by a minimum average particle sizes and the increased value of the agglomeration parameter. The obtained materials have increased values of the ultimate shear strength (249 MPa), hardness (102 HRE) under the bending strength of σb = 179 MPa. An improved technology is proposed for the production of hot-deformed powder materials based on mechanochemically activated chip powder with the addition of ferrotitanium.

About the Authors

M. A. Fedoseeva
Platov South-Russian State Polytechnic University (NPI)
Russian Federation


A. V. Poliakova
Platov South-Russian State Polytechnic University (NPI)
Russian Federation


References

1. Баглюк Г.А., Капля С.Н Измельчение сферического порошка и стружки быстрорежущей стали в планетарной мельнице // Порошковая металлургия. 1995. № 3/4. С. 11-14.

2. Чайников Н.А., Беляев П.С., Мозжухин А.Б., Жариков В.В. Ресурсосберегающие технологии изготовления металлополимерных материалов. Тамбов: Изд-во Томского государственного технического университета, 2003. 80 с.

3. Дорофеев Ю.Г., Безбородов Е.Н., Сергеенко С.Н. Особенности уплотнения при формовании порошковых материалов на основе алюминия, подвергнутых механохимической активации // Известия высших учебных заведений. Северо-Кавказский регион. Серия: Технические науки. 2001. № 4. С. 47-51.

4. Dorofeev Yu.G., Sergeenko S.N., Kolomiets R.V., Shevtsova S.I., Ganshin A.V., Skripets A.V. Assessment of porosity and structure of powder materials based on mechanically activated Ni-Fe-NaCl charges // Metallurgist. 2008. Т. 52. № 5-6. С. 307-313.

5. Гончарова О.Н., Ковина В.М. Влияние содержания никеля на значение параметров функции распределения порошковых частиц шихты Fe-Ni после обработки в высокоэнергетической мельнице // Моделирование. Теория, методы и средства: материалы науч.-практ. конф. (г. Новочеркасск, 6-7 декабря 2016 г.). Новочеркасск, 2016. С. 168-171.

6. Slabkii D.V., Sergeenko S.N. Hot-deformed Al-Ni powder materials based on alloy D-16 mechanically-activated turnings // Metallurgist. 2016. Vol. 59. No. 11. P. 1228-1233. https//doi.org/10.1007/s11015-016-0242-6

7. Fedoseeva M.A., Sergeenko S.N. Structure and properties of Al-FeTi powder material based on mechanochemically activated alloy D-16 turnings // Metallurgist. 2015. Т. 59. № 5-6. С. 535-539. https//doi.org/10.1007/s11015-015-0136-z

8. Dyuzhechkin M.K., Sergeenko S.N., Popov Y.V. Features of structure and property formation for hot-deformed materials of the Al-Si and Al-Si-C systems based on mechanochemically activated charges // Metallurgist. 2016. Т. 59. № 9-10. С. 835-842. https//doi.org/10.1007/s11015-016-0181-2

9. Алюминий. Свойства. Сплавы, Легирующие компоненты [Электронный ресурс]. URL: http://www.stroyexpo.com/content/view/256/62/ (14.03.2018)

10. Дорофеев Ю.Г., Безбородов Е.Н., Сергеенко С.Н. Кинетика механохимической активации стружки алюминиевого сплава Д-16, особенности уплотнения «стружкового» порошка и формирования полученного материала // Известия вузов. Цветная металлургия. 2003. № 5. С. 54-58.

11. Dorofeev Yu.G., Bezborodov E.N., Sergeenko S.N. Special features of formation of compacted material from mechanochemically activated fining of aluminum alloy D16 // Metal Science and Heat Treatment. 2003. Т. 45. № 1-2. С. 73-75. https//doi.org/ 10.1023/A:1023916717574

12. Дорофеев Ю.Г, Сергеенко С.Н., Коломиец Р.В. Кинетика механохимической активации порошковых шихт Ni-Fe // Физика и химия обработки материалов. 2007. № 1. С. 77-82

13. Ходаков Г.С. Физика измельчения. М.: Наука, 1972. 308 с.


Review

For citations:


Fedoseeva M.A., Poliakova A.V. POWDER MATERIAL BASED ON MECHANOCHEMICALLY ACTIVATED CHIP POWDER D16 WITH ADDED FERROTITANIUM. Proceedings of Irkutsk State Technical University. 2018;22(6):213-221. (In Russ.) https://doi.org/10.21285/1814-3520-2018-6-213-221

Views: 171


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)