Preview

iPolytech Journal

Advanced search

ALUMINATE SOLUTION CARBONIZATION AND ITS USE TO PRODUCE HIGH DISPERSITY MATERIALS

https://doi.org/10.21285/1814-3520-2018-6-196-203

Abstract

The PURPOSE of the paper is experimental study of the carbonization of alkaline aluminate solutions and search for the region of available technological regimes to obtain the precipitation of a high dispersity aluminum hydroxide. METHODS. The study uses the following analysis methods: multifactorial experimental study of the carbonization indices of aluminate solutions and calcination of their decomposition products, laser microanalysis of particle size and size distribution, spectral analysis of gas-air mixture composition, electron microscopy of precipitation composition and chemical analysis of solutions, mathematical processing of results. RESULTS. The process temperature and solution neutralization rate are shown to be of decisive importance when obtaining the products of high dispersity. The dependence of the average median diameter of precipitate particles for aluminum hydroxide crystallization in the form of bayerite and gibbsite has been obtained in the form of a second-order polynomial. It has been determined that the average size of gibbsite particles changes at the stage of high-temperature calcination depending on the heating rate and isothermal temperature that is accompanied by slight agglomeration and an increase in their size. CONCLUSION. Technological principles of obtaining finely dispersed materials under nepheline raw materials processing formulated in the article provide the opportunity to adapt the carbonization process for the production of non-metallurgical products.

About the Authors

V. N. Brichkin
Saint-Petersburg Mining University
Russian Federation


V. V. Vasiliev
Saint-Petersburg Mining University
Russian Federation


D. V. Fedoseev
Saint-Petersburg Mining University
Russian Federation


A. El Deeb
Saint-Petersburg Mining University
Russian Federation


References

1. Ханамирова А.А. Влияние условий получения гидроксидов и оксидов алюминия на спекание и свойства керамики // Химический журнал Армении. 2007. № 4 (60). С. 664-676.

2. Long W., Ting’an Z., Guozhi L., Aichun Z., Sida M., Weiguang Z. Characterization of Activated Alumina Production via Spray Pyrolysis // Light Metals 2017. The Minerals, Metals & Materials Series. TMS-Springer, 2017. P. 93-99.

3. Jinfeng Li, Wei Ch, Hai-xia Deng Study of ultrafine α-Al2O3 powder preparation // 31st International Conference of ICSOBA «Bauxite, Alumina, Aluminium industry in Russia and new global developments». Travaux ICSOBA. 2013. Vol. 38. No. 42. P. 329-332.

4. Snizhkoa L.O., Yerokhin A.L., Pilkington A. Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions // Electrochimica Acta. 2004. Vol. 49. P. 2085-2095.

5. Rao P., Iwasa M., Kondoh I. Properties of low-temperature-sintered high purity α-alumina ceramics // Journal of Material Science Letters. 2000. Vol. 19. P. 543-545.

6. Tan. I. High Purity Alumina - Use in Non-Metallurgical Application // 5th Asian Bauxite & Alumina Conference. Conference materials. Singapore 22-23 October. 2015.

7. Tao R., Zhao Y., Hong J.Z. Preparation of high pure and micron-sized α-Al2O3 powder by activated aluminium hydrolysis method // Advanced Materials Research. 2014. Vol. 1. P. 89-92.

8. Fujiwara S., Tamura Y., Maki H. Development of New High-Purity Alumina // Sumitomo Kagaku. 2007. Vol. 1. P. 1-10.

9. Бричкин В.Н., Сизяков В.М. Технологические факторы карбонизации алюминатных растворов // Цветные металлы. 2004. № 10. С. 49-52.

10. Louhi-Kultanen M., Kraslawski A., Avramenko Y. Case-based reasoning for crystallizer selection using rough sets and fuzzy sets analysis // Chemical Engineering and Processing, 2009. V. 48. P. 1193-1198.

11. Зеликман А.И., Вольдман Г.М., Беляевская Л.В. Теория гидрометаллургических процессов. М.: Металлургия, 1983. 424 с.

12. Wang Xing Li. Alumina Production Theory & Technology. Publisher Changsha. Central South University, 2010. 411 p.

13. Бричкин В.Н., Сизякова Е.В. Рост и морфология гидроксида алюминия // Цветные металлы. 2006. № 9. С. 37-41.

14. Sweegers C., Coninck H.C., Meekes H., Enckevort W.J.P., Hiralal I.D.K., Rijkeboer A. Morphology, evolution and other characteristics of gibbsite crystals grown from pure and impure aqueous sodium aluminate solutions // Journal of Crystal Growth. 2001. Vol. 233. P. 567-582.

15. Пат. 2560413 РФ, МПК C01F7/16. Способ глубокого обескремнивания алюминатных растворов / В.М. Сизяков, В.Н. Бричкин, Е.В. Сизякова, В.В. Васильев; заявитель и патентообладатель ФБГОУ ВПО «Национальный минерально-сырьевой университет «Горный». № 2013151026/05; заявл. 15.11.2013; опубл. 20.08.2015. Бюл. № 23.

16. Пат. 2612288 РФ, МПК C01F7/14. Способ разложения алюминатных растворов / В.Н. Бричкин, В.М. Сизяков, Е.В. Сизякова, Д.В. Федосеев; заявитель и патентообладатель ФБГОУ ВО «Санкт-Петербургский горный университет». № 2015152901; заявл. 09.12.2015; опубл. 06.03.2017. Бюл. № 7.


Review

For citations:


Brichkin V.N., Vasiliev V.V., Fedoseev D.V., El Deeb A. ALUMINATE SOLUTION CARBONIZATION AND ITS USE TO PRODUCE HIGH DISPERSITY MATERIALS. Proceedings of Irkutsk State Technical University. 2018;22(6):196-203. (In Russ.) https://doi.org/10.21285/1814-3520-2018-6-196-203

Views: 335


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)