Preview

iPolytech Journal

Advanced search

COMPLEX BUS BAR MODELING IN PHASE COORDINATES

https://doi.org/10.21285/1814-3520-2018-6-137-151

Abstract

PURPOSE. Today it is impossible to design and operate low-voltage networks without the creation of methods of mode computer simulation. However, the basic works in this direction are devoted to high voltage networks and do not take into account the features of low voltage networks up to 1000 V. The purpose of the researches, the results of which are presented in the article, consists in the development of methods and tools for adequate simulation of electrical power supply system containing 0.4 kV bus bars with large buses. METHODS. The methods of electrical power system simulation in phase coordinates have been used to determine the modes of electric power supply systems (EPSS) equipped with bus bars. The methods applied are based on the representation of multiwire elements of lattice equivalent circuits with full-meshed topology. The proposed simulation method of EPSS with bus bars allows to consider the real distribution of currents on bus sections, the skin effect, the proximity effect as well as the availability of metal boxes for bus placement. The main idea of the method is the change of buses by a set of thin wires whose joint current is equal to the bus current. RESULTS. The introduced simulation method of bus bars with rectangular buses allows to implement the system approach to EPSS mode determination and provides the opportunity of correct consideration of the skin and proximity effects when mode calculation. The adequacy of the method is confirmed by the agreement of simulation results and experimental data. Magnetic fields can be created in the proximity to the non-shielded bus bar. Their strengths considerably exceed the normalized values. Bus bars with bundled phases create especially high strength levels. The use of rational phasing allows to reduce the strength value. CONCLUSION. Computer simulation has shown that the use of multiwire models provides correct accounting of skin and proximity effects when used for mode calculation of networks with bus bars.

About the Authors

V. P. Zakaryukin
Irkutsk State Transport University
Russian Federation


A. V. Kryukov
Irkutsk State Transport University; Irkutsk National Research Technical University
Russian Federation


N. G. Kodolov
Branch of JSC System Operator of Unified Energy System
Russian Federation


References

1. Афтенюк А.Ф. Шинопроводные системы // Энергонадзор. № 10(86). 2016. С. 14-15.

2. Носов Г.В., Трофимович К.С. Расчет параметров трехфазного шинопровода // Электротехнические комплексы и системы управления. № 2. 2013. С. 1-6.

3. Мукосеев Ю.Л. Распределение переменного тока в токопроводах. М.-Л.: Госэнергоиздат, 1959. 136 с.

4. Мукосеев Ю.Л. Электроснабжение промышленных предприятий. М.: Энергия, 1973. 584 с.

5. Bayliss C., Hardy B. Transmission and distribution electrical engineering. Elsevier Ltd 2007. 1010 p.

6. Kiank H., Fruth W. Planning guide for power distribution plants. Publicis publishing. 2011. 238 p.

7. Справочник по энергоснабжению и электрооборудованию промышленных предприятий и общественных зданий. М.: Изд. дом МЭИ, 2010. 745 с.

8. Закарюкин В.П., Крюков А.В., Соколов В.Ю. Моделирование многоамперных шинопроводов // Проблемы энергетики. № 3-4. 2009. С. 65-73.

9. Закарюкин В.П., Крюков А.В., Соколов В.Ю. Методология расчета токораспределения в многопроводных системах // Современные технологии. Системный анализ. Моделирование. № 15. 2007. С. 36-40.

10. Закарюкин В.П. Крюков А.В. Моделирование токораспределения в массивных проводниках // Известия вузов. Проблемы энергетики. № 3-4. 2013. С. 61-67.

11. Чальян К.М. Методы расчета электромагнитных параметров токопроводов. М.: Энергоатомиздат. 1990. 280 с.

12. Закарюкин В.П., Крюков А.В. Сложнонесимметричные режимы электрических систем. Иркутск: Изд-во ИГУ, 2005. 273 с.

13. Zakaryukin V., Kryukov A., Cherepanov A. Intelligent Traction Power Supply System // International Scientific Conference Energy Management of Municipal Transportation Facilities and Transport. EMMFT 2017. Khabarovsk, April 10-17 2017. Advances in Intelligent Systems and Computing, Vol. 692. Springer, Cham. P. 91-99.

14. Zakaryukin V.P., Kryukov A.V. Multifunctional Mathematical Models of Railway Electric Systems // Innovation & Sustainability of Modern Railway - Proceedings of ISMR’2008. Beijing: China Railway Publishing House, 2008. P. 504-508.

15. Львов А.П. Электрические сети повышенной частоты. М.: Энергоатомиздат, 1981. 104 с.

16. Крюков А.В., Закарюкин В.П., Буякова Н.В. Управление электромагнитной обстановкой в тяговых сетях железных дорог. Ангарск: АГТА, 2014. 158 с.

17. Zakaryukin V.P., Kryukov A.V., Buyakova N.V. Improvement of Electromagnetic Environment in Traction Power Supply Systems // The power grid of the future / Proceeding № 2. Otto-von-Guericke University. Magdeburg. 2013. P. 39-44.


Review

For citations:


Zakaryukin V.P., Kryukov A.V., Kodolov N.G. COMPLEX BUS BAR MODELING IN PHASE COORDINATES. Proceedings of Irkutsk State Technical University. 2018;22(6):137-151. (In Russ.) https://doi.org/10.21285/1814-3520-2018-6-137-151

Views: 221


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4004 (Print)
ISSN 2782-6341 (Online)