

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЕСТНИК

Иркутского Государственного Технического Университета

Издательство Иркутского национального исследовательского технического университета, 2018

Том 22, № 8

2018

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЕСТНИК Иркутского Государственного Технического Университета

Том 22, № 8

2018

Издательство Иркутского национального исследовательского технического университета

Журнал основан в 1997 г.
Периодичность издания – ежемесячно
Журнал зарегистрирован Федеральной службой по надзору
в сфере связи, информационных технологий и массовых
коммуникаций (Роскомнадзор).

Свидетельство ПИ № ФС77-62813 от 18 августа 2015 г. Учредитель Иркутский национальный исследовательский технический университет

Подписной индекс в Каталоге российской прессы — 38237

Адрес редакции, учредителя и издателя: 664074, г. Иркутск, ул. Лермонтова, 83. e-mail: pgp@istu.edu

Редакционная коллегия

КОРНЯКОВ М.В. доктор технических наук, ректор Иркутского национального исследовательского технического университета, главный редактор (г. Иркутск, Россия)

НЕМЧИНОВА Н.В., доктор технических наук, профессор, заведующая кафедрой металлургии цветных металлов Иркутского национального исследовательского технического университета, заместитель главного редактора (г. Иркутск, Россия)

АЗАРОВ В.Н., доктор технических наук, профессор Московского института электроники и математики Национального исследовательского университета Высшей школы экономики (г. Москва, Россия)

БАЖИН В.Ю., доктор технических наук, декан факультета переработки минерального сырья Санкт-Петербургского горного университета (г. Санкт-Петербург, Россия)

БОРОВИКОВ Ю.С., доктор технических наук, проректор Национального исследовательского Томского политехнического университета (г. Томск, Россия)

ВОРОПАЙ Н.И., член-корреспондент РАН, доктор технических наук, профессор, заслуженный деятель науки РФ, научный руководитель Института систем энергетики им. Л.А. Мелентьева СО РАН (г. Иркутск, Россия)

ЗАЙДЕС С.А., доктор технических наук, профессор, заведующий кафедрой машиностроительных технологий и материалов Иркутского национального исследовательского технического университета (г. Иркутск, Россия)

МАМЯЧЕНКОВ С.В., доктор технических наук, профессор Уральского Федерального университета им. первого Президента России Б.Н. Ельцина (г. Екатеринбург, Россия)

ПАНТЕЛЕЕВ В.И., доктор технических наук, профессор Сибирского федерального университета (г. Красноярск, Россия)

ПЕТРОВ А.В., доктор технических наук, профессор Иркутского национального исследовательского технического университета (г. Иркутск, Россия)

СИТНИК Л.Е., доктор-инженер, профессор, заведующий кафедрой Транспортной техники Вроцлавского политехнического университета (Польша)

СТЫЧИНСКИ З.А., профессор Университета Отто-фон-Герике (г. Магдебург, Германия)

СУСЛОВ К.В., кандидат технических наук, профессор Иркутского национального исследовательского технического университета, (г. Иркутск, Россия)

ТИХОМИРОВ А.А, доктор экономических наук, профессор университета ИНХА (г. Инчеон, Республика Корея)

ФЕДОТОВ А.И., доктор технических наук, профессор, заведующий кафедрой автомобильного транспорта Иркутского национального исследовательского технического университета (г. Иркутск, Россия)

ШОЛЪТЕС Бертхольт, директор Института металловедения Кассельского университета (г. Кассель, Германия)

MINISTRY OF EDUCATION AND SCIENCE OF THE RUSSIAN FEDERATION

PROCEEDINGS

of Irkutsk State Technical University

Vol. 22, No. 8

2018

Publishers of Irkutsk National Research Technical University

The Journal was founded in 1997
Frequency of publication – monthly
The journal is registered with the Federal Agency for
Supervision of Communications, Information Technologies
and Mass Media (Roskomnadzor).
Certificate of registration № ПИ № ФС77-62813
of 18 August, 2015.

Founder: Irkutsk National Research Technical University

Subscription index in the Catalog of the Russian Press – 38237

Address of the editorial Board, founder and publisher: 83 Lermontov St., Irkutsk, 664074 e-mail: pgp@istu.edu

Editorial board

KORNIAKOV M.V., Dr. Sc. in Engineering, Rector Rector of Irkutsk National Research Technical University, Editor-in-Chief (Irkutsk, Russia)

NEMCHINOVA N.V., Doctor of technical sciences, Professor, Head of the Department of Non-Ferrous Metals Metallurgy of Irkutsk National Research Technical University, Deputy Editor in Chief (Irkutsk, Russia)

AZAROV V.N., Doctor of technical sciences, Professor of Moscow Institute of Electronics and Mathematics of Higher School of Economics National Research University (Moscow, Russia)

BAZHIN V.Y., Doctor of technical sciences, Dean of the Faculty of Mineral Raw Materials Processing of the St. Petersburg Mining University (Saint Petersburg Mining University) (Saint Petersburg, Russia)

BOROVIKOV Y.S., Doctor of technical sciences, Pro-Rector of National Research Tomsk Polytechnic University (Tomsk, Russia)

VOROPAI N.I., Corresponding Member of the Russian Academy of Sciences, Doctor of technical sciences, Professor, Honored Scientist of the Russian Federation, Scientific Advisor of Melentiev Energy Systems Institute SB RAS (Irkutsk, Russia) ZAIDES S.A., Doctor of technical sciences, Professor, Head of the Department of Machine-Building Technologies and Materials of Irkutsk National Research Technical University (Irkutsk, Russia)

MAMYACHENKOV S.V., Doctor of technical sciences, Professor of the Ural Federal University named after the first President of Russia B.N. Yeltsin (Ekaterinburg, Russia)

PANTELEEV V.I., Doctor of technical sciences, Professor of Siberian Federal University (Krasnoyarsk, Russia)

PETROV A.V., Doctor of technical sciences, Professor of Irkutsk National Research Technical University (Irkutsk, Russia)

SITNIK L.E., Doctor-Engineer, Professor, Head of the Department of Transport Technology of Wrocław University of Science and Technology (Poland)

STYCHÍNSKI Z.A., Professor of the Otto von Guericke University (Magdeburg, Germany)

SUSLOV K.V., Candidate of technical sciences, Professor of Irkutsk National Research Technical University (Irkutsk, Russia)

TIKHOMIROV A.A., Doctor of Economics, Professor of the INHA University (Incheon, Republic of Korea)

FEDOTOV A.I., Doctor of technical sciences, Professor, Head of the Department of Automobile Transport of Irkutsk National Research Technical University (Irkutsk, Russia)

SCHOLTES BERTHOLT, Director of the Institute of Metallurgy of the University of Kassel (Kassel, Germany)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЕСТНИК Иркутского Государственного Технического Университета

Том 22, № 8

2018

СОДЕРЖАНИЕ

ООД-		
\odot		a
	Машиностроение и машиноведение	Y
©	Алсигар М.К., Переверзев П.П. Виртуальное формообразование обрабатываемой поверхности при круглом наружном шлифовании с осевой подачей	10
	Берман А.Ф., Николайчук О.А., Юрин А.Ю. Трансдисциплинарная модель задачи обоснования свойств материалов и конструкций	17
©	Ефременков Е.А., Ефременкова С.К. Изменение точности изготовления циклоидальных колес при сохранении кинематических параметров передачи	26
©	Тихонов А.Г., Смольков П.С. Исследование остаточных напряжений в поверхностном слое деталей из стали 13X15H4AM3	
	при продольном точении	34
:`::`:`:	Информатика, вычислительная техника и управление	
200		
250	Игумнов И.В. Исследование ШИМ-элемента со спайковой	46 22
200	нейронной сетьюСерышева И.А., Чекан М.А., Бархатова Л.В., Крупенев Е.А. Метод	63
881-20	сопряженных градиентов в системе автоматического построения	
	прогнозирующих моделей	72
	Энергетика	
	Азорин А.Ю. Автоматическая синхронизация «островов» при восстановлении систем электроснабжения с распределенной	22
	Алферов И.В., Зырянов В.М., Митрофанов Н.А. Влияние конденсаторных установок на перетоки мощности высших гармоник	33
@	Андреев М.В., Спица М.В., Киевец А.В. Математическая модель	95 104
	Иванова И.Ю., Тугузова Т.Ф., Халгаева Н.А. Возможные масштабы использования ветропотенциала для энергоснабжения в Восточной	114

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Иркутского Государственного Технического Университета

2018 		СОДЕРЖАНИ	ΙE
		Металлургия и материаловедение	
оство Иркутского национального исследовательского технического университета,	[2]	Исмонов Р.Д., Ганиев И.Н., Одиназода Х.О., Сафаров А.М. Повышение анодной устойчивости алюминиевого сплава АБ1 (АІ+1%Ве) легированием индием	31 43 51
ОНДУР		Транспорт	
о Иркутского наци	 	Балакина Е. В., Барасов А.Ш., Гаврилов А.М., Морозько А.Д., Сарбаев Д.С., Тодорев А.Н., Тюкин Н.Ф. Экспериментальные исследования радиальной жесткости наклоненного колеса	
bCTB		парка подвижного состава городского пассажирского транспорта общего пользования с учетом взаимного влияния маршрутов	89

PROCEEDINGS

of Irkutsk State Technical University

Vol. 22, No. 8

2018

CONTENTS

	Mechanical Engineering and Machine Science	O
©	Alsigar M.K., Pereverzev P.P. Virtual shaping of the machined surface under external cylindrical grinding with a traverse feed	10 17 26 34
	Information Science, Computer Engineering and Management	
	Igumnov I.V. Study of a PWM-element with a spiking neural network Serysheva I.A., Chekan M.A., Barhatova L.V., Krupenev E.A. Conjugate gradient method in the system of predicting model automatic	46 63 72
	Power Engineering	
E	Andreev M.V., Spitsa M.V., Kievets A.V. Mathematical model of Preisach theory-based magnetic hysteresis	33 95 104 114

of Irkutsk State Technical University

CONTENTS

	Ш			
			Metallurgy and Materials Science	
Research Technical University, 2018		[3] [3]	Kolmachikhina E.B., Ryzhkova E.A., Dmitrieva D.V., Vakula K.A., Mokretsov M.A. Study of lignosulfonate, anionic surfactants and their mixture effect on zinc concentrate pressure leaching	131 143 151
esearc			Transport	
		[]	Balakina E.V., Barasov A.Sh., Gavrilov A.M., Morozko A.D., Sarbaev D.S., Todorev A.N., Tyukin N.F. Experimental studies of inclined wheel radial stiffness.	173
F Irkutsk National			Fadeev A.I., Fomin E.V. Determination of the optimal structure of urban public transport rolling stock taking into account mutual influence of	181
f Irkuts			Parsaev E.V., Teterina I.A., Kashtalinskiy A.S. Evaluation of atmospheric air pollution by traffic flows on road and street networks on	189

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЕСТНИК Иркутского Государственного Технического Университета

Уважаемые читатели!

Предлагаем вашему вниманию очередной выпуск научного журнала «Вестник Иркутского государственного технического университета».

Журнал включен в Перечень ведущих научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени доктора и кандидата наук, утвержденный ВАК Минобразования России.

«Вестник ИрГТУ» включен в международный каталог периодических изданий «UlrichsPeriodicals Directory», в базу данных EBSCO, в Научную электронную библиотеку (eLIBRARY.RU), представлен в электронной библиотеке "Cyberleninka", библиотеке Oxford, Directory of Open Access Journales (DOAJ) рассылается в Российскую книжную палату, ВИНИТИ РАН, каждой статье присваивается цифровой индификатор DOI.

«Вестник ИрГТУ» реферируется и рецензируется.

Приглашаем вас к активному творческому сотрудничеству по научным направлениям:

- Машиностроение и машиноведение
- Информатика, вычислительная техника и управление
- Энергетика
- Металлургия и материаловедение
- Транспорт

Редколлегия

PROCEEDINGS

of Irkutsk State Technical University

Dear Readers!

We would like to bring to your attention the next issue of the scientific journal "Proceedings of Irkutsk State Technical University". The journal is included in the list of the leading scientific journals and publications, where the key scientific results of doctoral (candidate's) theses approved by the State Commission for Academic Degrees and Titles of the Russian Ministry of Education are to be published.

Proceedings of Irkutsk State Technical University ("Vestnik IrGTU") is included in the "UlrichsPeriodicals Directory", EBSCO database, Scientific electronic library (eLIBRARY.RU). It is presented in the e-library "Cyberleninka", University OXFORD, Scientific Indexing Services (SIS), Directory of Open Access Journals (DOAJ). It is sent to the Russian Book Chamber and All-Russian Institute for Scientific and Technical Information (VINITI) RAS. Each article is assigned a digital indicator DOI.

The journal "Proceedings of Irkutsk State Technical University" is abstracted and reviewed.

•You are welcome for active and creative collaboration in the following fields:

- Mechanical Engineering and Machine Science
- Information Science, Computer Engineering and Control
- Power Engineering
- Metallurgy and Materials Science
- Transport

Editorial Board

Оригинальная статья / Original article УДК 621.9

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-10-16

ВИРТУАЛЬНОЕ ФОРМООБРАЗОВАНИЕ ОБРАБАТЫВАЕМОЙ ПОВЕРХНОСТИ ПРИ КРУГЛОМ НАРУЖНОМ ШЛИФОВАНИИ С ОСЕВОЙ ПОДАЧЕЙ

© М.К. Алсигар^{1,2}, П.П. Переверзев^{1,3}

¹Южно-Уральский государственный университет,

454080, Российская Федерация, г. Челябинск, проспект Ленина, 76.

²Университет Ди-Кар, Республика Ирак, г. Насирия, Ди-Кар, 31.

³Челябинский филиал ФГОБУВО «Финансовый университет при Правительстве Российской Федерации»,

454080, Российская Федерация, г. Челябинск, ул. Работниц, 58.

РЕЗЮМЕ. ЦЕЛЬ. Рассмотрена модель формообразования обрабатываемой поверхности на операции круглого наружного шлифования с осевой подачей, выполняемой в автоматическом цикле на станках с числовым программным управлением. Разработанная модель формообразования поверхности позволяет вести пошаговый расчет текуших значений фактической радиальной подачи и размеров радиусов в разных сечениях обрабатываемой поверхности и прогнозировать значения размеров шлифуемой поверхности на протяжении всего цикла шлифования для заданных условий обработки. МЕТОДЫ. Данные, представленные в нормативной литературе, послужили основой при создании систем автоматизированного проектирования, что делает их использование при разработке циклов для станков с числовым программным управлением не эффективным. Существующие инженерные методики также основываются на рекомендациях нормативной литературы или на частных эмпирических данных, не учитывая при этом изменений переменных условий обработки. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. В работе рассмотрены особенности моделирования циклов шлифования по длине обрабатываемой поверхности детали, показана расчетная схема, устанавливающая взаимосвязь графиков накопленных программных (tn к.i.z) и фактических (tф к,i,z) подач, натяга (tн к,i,z), упругой деформации (у к,i,z) технологической системы с радиусами обрабатываемой поверхности ($R_{k,i,z}$) при шлифовании некруглой заготовки с максимальным радиусом (Rзаг_{мах}), начальными радиусами заготовки (Rзагк) и исходным радиальным биением, которое рассчитывается по формулам. ВЫВОДЫ. Представленная в работе модель формообразования шлифуемой поверхности на операции круглого наружного шлифования с осевой подачей, выполняемой на станке с числовым программным управлением, позволяет прогнозировать фактические размеры обрабатываемой поверхности для заданного цикла и технологических условий обработки и осуществлять построение модели обработанной поверхности.

Ключевые слова: круглое наружное шлифование, осевая подача, формообразование поверхности, цикл шлифования, фактическая радиальная подача, радиусы шлифуемой поверхности.

Информация о статье. Дата поступления 28 апреля 2018 г.; дата принятия к печати 12 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Алсигар М.К., Переверзев П.П. Виртуальное формообразование обрабатываемой поверхности при круглом наружном шлифовании с осевой подачей // Вестник Иркутского государственного технического университета. 2018. T. 22. № 8. C. 10-16. DOI: 10.21285/1814-3520-2018-8-10-16

VIRTUAL SHAPING OF THE MACHINED SURFACE UNDER EXTERNAL CYLINDRICAL GRINDING WITH A TRAVERSE FEED

M.K. Alsigar, P.P. Pereverzev

South Ural State University, 76, Lenin pr., Chelyabinsk, 454080, Russian Federation University of Dhi Qar, 31, Dhi Qar Governorate, Nasiriyah, the Republic of Iraq Financial University under the Government of the Russian Federation, 58, Rabotnits St., Chelyabinsk, 454080, Russian Federation

¹Алсигар Масар Кадим, аспирант, e-mail: Masar8937@gmail.com

²Переверзев Павел Петрович, профессор, доктор технических наук, e-mail: pereverzevpp@susu.ru

Pavel P. Pereverzev, Professor, Doctor of technical sciences, e-mail: pereverzevpp@susu.ru

ABSTRACT. PURPOSE. The paper deals with the model of shaping a processed surface in the operation of external cylindrical grinding with a traverse feed performed in an automatic cycle on CNC machines. The developed model of surface formation allows to conduct a step-by-step calculation of the current values of the actual radial in-feed and radii sizes in the different sections of the machined surface and predict the values of grinding surface dimensions throughout the whole grinding cycle for the given processing conditions. METHODS. The basis for the creation of computer-aided design systems serve the data presented in the regulatory literature that makes their use inefficient for the development of cycles for CNC machines. Existing engineering techniques also based on the recommendations of regulatory literature or on particular empirical data do not take into account the changes in variable processing conditions. RESULTS AND THEIR **DISCUSSION.** The paper discusses the simulation features of grinding cycles along the length of the machined part surface, shows a calculation scheme that establishes the relationship between the graphs of the accumulated software (tn $k_{i,i,z}$) and actual ($t\phi_{k,i,z}$) feeds, tension ($tH_{k,i,z}$), elastic strain ($y_{k,i,z}$) of the technological system with the radii of the machined surface (R_{k,i,z}) when grinding a non-circular workpiece with the maximum radius (R3ar_{max}), original workpiece radii (R3ar_k) and initial radial run-out, which is calculated by formulas. CONCLUSIONS. Presented in the article formation model of the grinding surface in the operation of external cylindrical grinding with a traverse feed performed on a CNC machine allows to predict the actual dimensions of the machined surface for a given cycle and technological conditions of machining as well as to construct a model of the machined surface.

Keywords: external cylindrical grinding, traverse feed, surface formation, grinding cycle, actual radial feed, radii of machined surface

Information about the article. Received April 28, 2018; accepted for publication July 12, 2018; available online August 31, 2018.

For citation. Alsigar M.K., Pereverzev P.P. Virtual shaping of the machined surface under external cylindrical grinding with a traverse feed. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 10–16. DOI: 10.21285/1814-3520-2018-8-10-16. (In Russian).

Введение

В современном автоматизированном машиностроении операции круглого шлифования с осевой подачей выполняются на круглошлифовальных станках с числовым программным управлением (ЧПУ) [1–10].

Управление режимами резания на этих операциях осуществляется путем ступенчатого изменения программных значений радиальной и осевой подач по командам прибора активного контроля в зависимости от оставшейся величины снятого припуска [11–15]. Наличие зазоров в кинематических цепях узлов станка и упругая податливость звеньев технологической системы приводят к тому, что фактический закон движения круга относительно оси вращения детали отличается от программного, задаваемого для каждой ступени цикла z с пульта управления станка путем регулирования управляющего воздействия на двигатель привода подачи станка [8–13].

В результате фактическая радиальная подача $\Delta t \varphi_{k,i,z}$ на каждом k-м радиусе и i-м обороте заготовки в течение цикла шлифования не равна программному значению радиальной подачи $\Delta t n_{k,i,z}$, что приводит к колебаниям силы резания и упругой деформации технологической системы, которые в свою очередь обусловливают колебание размеров радиусов обрабатываемой поверхности и наличие погрешности размеров обрабатываемой поверхности.

Модель формообразования шлифуемой поверхности

Для проектирования высокопроизводительных циклов шлифования необходима модель формообразования шлифуемой поверхности, устанавливающая взаимосвязь радиальной со-

³Братан С.М. Технологические основы обеспечения качества и повышения стабильности высокопроизводительного чистового тонкого шлифования: дис. ... д-ра техн. наук: 05.02.08 «Технология машиностроения». Одесса, 2006. 339 с. / Bratan S.M. Technological fundamentals of quality provision and stability improvement of high-performance finishing grinding: Doctoral Dissertation in Technical Sciences: 05.02.08 "Technology of Mechanical Engineering". Odessa, 2006. 339 p.

ставляющей силы резания Ру_{к,i,z} с режимами шлифования, упругими деформациями **у**к,i,z и технологическими условиями операции. Эта модель позволит вести расчет текущих значений радиусов R_{k,i,z} обрабатываемой поверхности на каждом i-м обороте заготовки на всех z-х ступенях цикла для заданных режимных параметров цикла и условий шлифования. На рис. 1 показаны графики программной и фактической подач за ход в двухступенчатом цикле изменения радиальной подачи на операции круглого шлифования с осевой подачей некруглой заготовки овальной формы. Программная подача $\Delta t n_{k,i,z}$, в течение цикла периодически изменяется от заданного значения до нуля. На рабочем ходу (РХ) программная радиальная подача ∆tпк.i.z больше нуля, а на холостом ходу (XX) программная радиальная подача $\Delta t n_{k,i,z}$ равна нулю. Но значение фактической радиальной подачи $\Delta t \Phi_{k,i,z}$ не равно нулю и изменяется в зависимости от изменения натяга в технологической системе и исходного радиального биения заготовки. Из-за наличия исходного радиального биения график фактической подачи ∆tф_{к,i,z} характеризуется резкими скачками в течение каждого хода. Причем значения фактической подачи ∆tфк,i,z на РХ и XX значительно отличаются. На РХ фактическая радиальная подача значительно выше, чем на XX, т.к. из-за отсутствия программной подачи на XX металл снимается только за счет натяга. Текущие значения радиусов обрабатываемой поверхности уменьшаются на величину фактической подачи $\Delta t \phi_{k,i,z}$. Зная текущие значения фактической радиальной подачи $\Delta t \phi_{k,i,z}$, можно вести расчет текущих значений радиусов $R_{k,i,z}$ в течение всего цикла и прогнозировать размеры обработанной поверхности в конце цикла шлифования по следующей формуле:

$$R_{k,i,z} = R_{k,i-1,z} - \Delta t \phi_{k,i,z}, \tag{1}$$

где $R_{k,i,z}$ – текущее значение k-го радиуса детали на i-м обороте заготовки на z-й ступени; $R_{k,i-1,z}$ – текущее значение k-го радиуса детали на предыдущем i-1 обороте заготовки на z-й ступени. Массив расчетных значений радиусов в разных сечениях определяет размеры и форму

массив расчетных значении радиусов в разных сечениях определяет размеры и форму обрабатываемой поверхности.

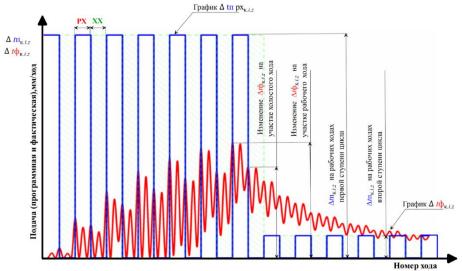


Рис. 1. График двухступенчатого цикла с холостым ходом при круглом наружном шлифовании с осевой подачей

Fig. 1. Graph of a two-stage cycle with idling under external cylindrical grinding with a traverse feed

Для вывода модели формообразования шлифуемой поверхности установим взаимосвязь текущих значений радиусов $R_{k,i,z}$ шлифуемой поверхности с фактическими подачами $\Delta t \varphi_{k,i,z}$, программными подачами $\Delta t \eta_{k,i,z}$, силой резания $P_{yk,i,z}$, упругими деформациями $y_{k,i,z}$ технологической системы (TC) для заданных технологических условий обработки.

На рис. 2 показана расчетная схема, устанавливающая взаимосвязь графиков накопленных программных $tn_{k,i,z}$ и фактических $t\phi_{k,i,z}$ подач, натяга $th_{k,i,z}$, упругой деформации $y_{k,i,z}$ технологической системы с радиусами обрабатываемой поверхности $R_{k,i,z}$ при шлифовании некруглой заготовки с максимальным радиусом R3 г $_{max}$, начальными радиусами заготовки R3 г $_{max}$ 4 и исходным радиальным биением, которое рассчитывается по формуле:

$$\Delta R$$
3ar_k = R3ar_{max} - R3ar_k.

В соответствии с расчетной схемой на рис. 2 величины накопленных программных $tn_{k,i,z}$ и фактических $t\phi_{k,i,z}$ подач рассчитываются как суммы соответствующих подач на каждом ходе круга, то есть:

$$t_{\Pi_{k,i,z}} = \sum_{1}^{k} \sum_{1}^{i} \sum_{1}^{z} \Delta t_{\Pi_{k,i,z}};$$
 (2)

$$t_{\Phi_{k,i,z}} = \sum_{1}^{k} \sum_{1}^{i-1} \sum_{1}^{z} \Delta t_{\Phi_{k,i,z}}.$$
 (3)

Величина натяга $th_{k,i,z}$ зависит от упругой деформации $y_{k,i,z}$ технологической системы и фактической подачи $\Delta t \varphi_{k,i,z}$, и, в соответствии с расчетной схемой на рис. 2, определяется по следующим формулам:

$$t_{\mathrm{H}_{\mathrm{k},\mathrm{i},\mathrm{z}}} = y_{\mathrm{k},\mathrm{i},\mathrm{z}} + \Delta t_{\Phi_{\mathrm{k},\mathrm{i},\mathrm{z}}}; \tag{4}$$

$$\mathbf{y}_{kiz} = \gamma \mathbf{P}_{\mathbf{y}_{kiz}},\tag{5}$$

при (1, 2, 3).

$$\mathbf{P}_{y_{z,j}} = \mathbf{K}_{1} \Delta t_{\phi_{z,j}} + \mathbf{K}_{2} \sqrt{\Delta t_{\phi_{z,j}}}.$$
 (6)

При выполнении конкретной операции многие параметры сохраняют свои значения практически постоянными (диаметр и ширина заготовки, физико-механические свойства обрабатываемого материала, окружная скорость вращения круга и т.д.). Поэтому выразим их через коэффициенты К1, К2 [7, 15]:

$$K1 = \frac{\pi d\sigma \, \varepsilon_i tg\beta S_{np}}{V_p}, \tag{7}$$

$$K2 = \frac{\sigma}{3} \eta \frac{S_{\pi p}}{n} \sqrt{\frac{d D}{D+d}},$$
 (8)

где K_1 и K_2 – аналитические коэффициенты, характеризующие взаимосвязь различных технологических параметров процесса шлифования; γ – податливость технологической системы; σ – интенсивность напряжений в движущемся объеме деформируемого металла, характеризующая сопротивление металла пластическому течению; $S_{\Pi P}$ – продольная подача, мм/мин; n – частота вращения детали, мин⁻¹; d – диаметр обрабатываемой поверхности; D – диаметр шлифовального круга; ε_i – интенсивность степени деформации металла в зоне сдвига; η – степень

затупления шлифовального круга, равная отношению суммарной площади площадок затупления всех зерен круга, находящихся на всей его поверхности, к геометрической площади всей рабочей поверхности круга, т.е. величина η определяет относительную опорную поверхность круга по площадкам затупления зерен; β – угол между вектором скорости зерна и плоскостью сдвига металла; Vp – скорость резания абразивного зерна шлифования круга.

Согласно расчетной схеме на рис. 2, взаимосвязь всех подач, натяга и упругих деформаций ТС можно выразить следующим уравнением:

$$t_{\Pi_{k,i,z}} = t_{H_{k,i,z}} + t_{\Phi_{k,i-1,z}} + (R_{3a\Gamma_{max}} - R_{3a\Gamma_{k}}).$$
 (9)

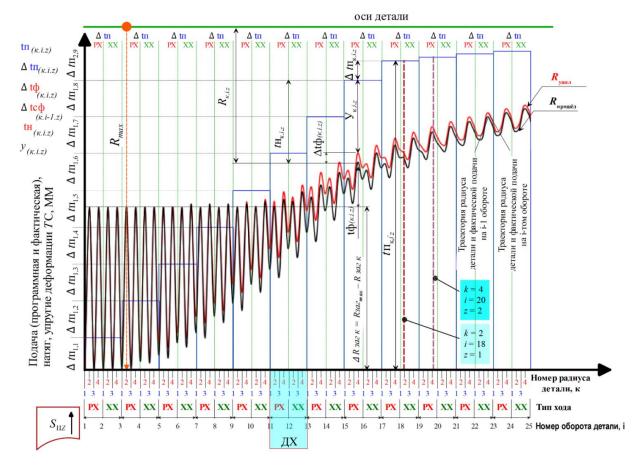


Рис. 2. Модель процесса формообразования поверхности при круглом наружном шлифовании Fig. 2. Model of the surface shaping process under cylindrical external grinding

После подстановки в это уравнение вышеприведенных формул и решая его относительно фактической подачи, получим:

$$\Delta t_{\varphi_{k,i,z}} = \left[\frac{-\gamma \ K_2}{2 \left(1 + K_1 \gamma \right)} + \sqrt{\left[\frac{\gamma \ K_2}{2 \left(1 + K_1 \gamma \right)} \right]^2 + \frac{t_{\Pi_{k,i,z}} - t_{\varphi_{k,i,z}} - \Delta R 3 a \Gamma_k}{1 + K_1 \gamma}} \right]^2}. \tag{10}$$

⁴Переверзев П.П. Теория и методика расчета оптимальных циклов обработки деталей на круглошлифовальных станках с программным управлением: дис. ... канд. техн. наук: 05.02.08 «Технология машиностроения». Челябинск, 1999. 293 с. / Pereverzev P.P. Theory and calculation procedure of optimum machining cycles of parts on cylindrical grinding machine-tools with programmed control: Candidate's Dissertation in Technical Sciences: 05.02.08 "Technology of Mechanical Engineering". Chelyabinsk, 1999. 293 p.

Формулы (1)—(10) представляют собой модель формообразования шлифуемой поверхности, которая позволяет вести расчет текущих значений радиусов в любом сечении шлифуемой поверхности на каждом обороте заготовки в течение всего цикла в зависимости от заданных условий шлифования.

Выводы

- 1. Представленная в работе модель формообразования шлифуемой поверхности на операции круглого наружного шлифования с осевой подачей, выполняемой на станке с ЧПУ, позволяет прогнозировать фактические размеры обрабатываемой поверхности для заданного цикла и технологических условий обработки и осуществлять построение модели обработанной поверхности.
- 2. На основе фактических размеров обрабатываемой поверхности, полученных с помощью модели формообразования, можно оценивать точность обработки при заданных условиях шлифования.
- 3. Полученная модель формообразования носит аналитический характер, так как получена на основе математической взаимосвязи размеров радиусов обрабатываемой поверхности и фактических подач с аналитической моделью силы резания, разработанной на основе фундаментальных закономерностей механики процесса резания и теории пластической деформации металла в зоне резания, и устанавливающая связь с основными технологическими факторами, к которым относятся:
 - физико-механические свойства шлифуемого металла (интенсивность напряжений);
- геометрические параметры зоны контакта круга и заготовки (фактическая скорость подачи, диаметры заготовки и круга, частота вращения заготовки, ширина обрабатываемой поверхности заготовки);
- упругие свойства технологической системы (упругие деформации и податливость технологической системы);
 - характеристика шлифовального круга и степень затупления зерен круга.
- 4. Взаимосвязь модели формообразования шлифуемой поверхности с режимами резания дает возможность оценивать влияние различных технологических факторов на производительность и точность обработки при варьировании следующими управляющими параметрами цикла круглого наружного шлифования с осевой подачей:
 - количество ступеней цикла для радиальной и осевой подач;
 - программные скорости радиальной и осевой подач на каждой ступени цикла;
 - распределение припуска по ступеням цикла для радиальной и осевой подач;
 - окружные скорости вращения круга и заготовки.

Библиографический список

- 1. Malkin S., Cook N. The wear of grinding wheels. Part 1. Attritious wear. Trans ASME J Eng Ind 93. 1971. P. 1120–1128.
- 2. Переверзев П.П., Акинцева А.В. Моделирование процесса съема металла при внутреннем шлифовании с учетом особенностей кинематики резания // СТИН. 2016. №. 4. С. 23–27.
- 3. Eda H., Ohmura E., Yamauchi S., Inasaki I. Computer visual simulation on structural changes of steel in grinding process and experimental verication, CIRP Annals–Manufacturing Technology. 1993. No. 42 (1). P. 389–392.
- 4. Rowe W.B., Black S.C.E., Mills B., Qi H.S., Morgan M.N. (1995) Experimental investigation of heat transfer in grinding. CIRP Ann Manuf-Technol. No. 44(1). P. 329–332.
- 5. Маслов Е.Н. Теория шлифования материалов. М.: Машиностроение, 1974. 319 с.
- 6. Лурье Г.Б. Шлифование металлов. М.: Машиностроение, 1969. 192 с.
- 7. Переверзев П.П., Алсигар М.К. Моделирование процесса съема металла в автоматических циклах круглого наружного шлифования с продольной подачей // Металлообработка. 2017. № 6. С. 55–60.
- 8. Morgan M.N., Cai R., Guidotti A., Allanson D.R., Rowe W.B. Forces and temperatures in hard turning. Machining Science and Technology. Vol. 10. Issue 2, 1 July 2006, Pages. P. 157–179.

- Novoselov YU.K. Dinamika formoobrazovaniya poverhnostej pri abrazivnoj obrabotke. Sevastopol': SevNTU Publ., 2012. 304 p.
- 10. Rowe W.B., Black S.C.E., Mills B., Qi H.S., Morgan M.N. Experimental investigation of heat transfer in grinding. CIRP Ann Manuf-Technol. 1995. No. 44(1). P. 329–332.
- 11. Malkin S., Cook N.H. The wear of grinding wheels. Part 1. Attritions' wear. ASME J Eng Ind. 1971. No. 93. P. 1120–1128.
- 12. Переверзев П.П., Алсигар М.К. Математическое моделирование процесса силы резания при шлифовании с продольной подачей // Автоматизированное проектирование в машиностроении: материалы V Междунар. заоч. науч.-практ. конф. (г. Новокузнецк, 29–30 ноября 2017 г.). Новокузнецк, 2017. № 5. С. 49–55.
- 13. Rowe W.B., Morgan M.N. The effect of deformation on the contact area in grinding. CIRP Ann Manuf Technol. 1993. No. 42(1). P. 409–412.
- 14. Brinksmeier E., Aurich J., Govekar E., Heinzel C., Hoffmeister H., Klocke F. Advances in modeling and simulation of grinding processes. Ann. CIRP. 2006. No. 55 (2). P. 667–696.
- 15. Inasaki I., To"nshoff H.K., Howes T.D. Abrasive machining in the future. Keynote. Paper, Ann. CIRP. 1993. No. 42 (2). P. 723–732.

References

- 1. Malkin S., Cook N. The wear of grinding wheels. Part 1. Attritious wear. Trans ASME J Eng Ind 93, 1971, pp. 1120–1128.
- 2. Pereverzev P.P., Akinceva A.V. Modeling of the metal removal process under internal grinding with regard of the features of cutting kinematics. STIN [Russian Engineering Research], 2016, no. 4, pp. 23–27. (In Russian).
- 3. Eda H., Ohmura E., Yamauchi S., Inasaki I. Computer visual simulation on structural changes of steel in grinding process and experimental verication, CIRP Annals–Manufacturing Technology. 1993, 42 (1), pp. 389–392.
- 4. Rowe W.B., Black S.C.E., Mills B., Qi H.S., Morgan M.N. Experimental investigation of heat transfer in grinding. CIRP Ann Manuf-Technol, 1995, no. 44(1), pp. 329–332.
- 5. Maslov E.N. Teoriya shlifovaniya materialov [Theory of material grinding]. Moscow: Mashinostroenie Publ., 1974, 319 p. (In Russian).
- 6. Lur'e G.B. Shlifovanie metallov [Grinding of metals]. Moscow: Mashinostroenie Publ., 1969, 192 p. (In Russian).
- 7. Pereverzev P.P., Alsigar M.K. Modeling of the metal removal process in automatic cycles of cylindrical external grinding with longitudinal feed. Metalloobrabotka [Metal Processing], 2017, no. 6, pp. 55–60. (In Russian).
- 8. Morgan M.N., Cai R., Guidotti A., Allanson D.R., Rowe W.B. Forces and temperatures in hard turning. Machining Science and Technology. 2006, vol. 10, Issue 2, pp. 157–179.
- 9. Novoselov YU.K. Dinamika formoobrazovaniya poverhnostej pri abrazivnoj obrabotke [Formation dynamics of surfaces under abrasive machining]. Sevastopol': SevNTU Publ., 2012, 304 p.
- 10. Rowe W.B., Black S.C.E., Mills B., Qi H.S., Morgan M.N. Experimental investigation of heat transfer in grinding. CIRP Ann Manuf-Technol, 1995, no. 44(1), pp. 329–332.
- 11. Malkin S., Cook N.H. The wear of grinding wheels. Part 1. Attritions wear. ASME J Eng Ind, 1971, no. 93, pp. 1120–1128.
- 12. Pereverzev P.P., Alsigar M.K. Matematicheskoe modelirovanie processa sily rezaniya pri shlifovanii s prodol'noj podachej [Mathematical modeling of the cutting force process under grinding with a longitudinal feed]. Materialy V Mezhdunarodnoj zaochnoj nauchno-prakticheskoj konferencii "Avtomatizirovannoe proektirovanie v mashinostroenii" [Proceedings of V International correspondent scientific and practical Conference "Automated Design in Mechanical Engineering", Novokuznetsk, 29–30 November 2017]. Novokuznetsk, 2017, no. 5, pp. 49–55. (In Russian).
- 13. Rowe W.B., Morgan M.N. The effect of deformation on the contact area in grinding. CIRP Ann Manuf Technol, 1993, no. 42(1), pp. 409–412.
- 14. Brinksmeier E., Aurich J., Govekar E., Heinzel C., Hoffmeister H., Klocke F. Advances in modeling and simulation of grinding processes. Ann. CIRP, 2006, no. 55 (2), pp. 667–696.
- 15. Inasaki I., To'nshoff H.K., Howes T.D. Abrasive machining in the future. Keynote. Paper, Ann. CIRP, 1993, no. 42 (2), pp. 723–732.

Критерии авторства

Алсигар М.К., Переверзев П.П. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Authorship criteria

Alsigar M.K., Pereverzev P.P. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Оригинальная статья / Original article УДК 620.1-1/-9; 620.18-19 DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-17-25

ТРАНСДИСЦИПЛИНАРНАЯ МОДЕЛЬ ЗАДАЧИ ОБОСНОВАНИЯ СВОЙСТВ МАТЕРИАЛОВ И КОНСТРУКЦИЙ

© А.Ф. Берман¹, О.А. Николайчук², А.Ю. Юрин³

1,2,3Институт динамики систем и теории управления имени В.М. Матросова СО РАН, 664033, Российская Федерация, г. Иркутск, ул. Лермонтова,134.

3Иркутский национальный исследовательский технический университет, 664074, Российская Федерация, г. Иркутск, ул. Лермонтова, 83.

РЕЗЮМЕ. ЦЕЛЬ. Разработать трансдисциплинарную модель, обеспечивающую взаимоувязанное решение междисциплинарных и дисциплинарных задач и условия для участия в их решении специалистов различных предметных областей. МЕТОДЫ. Интеграция данных и знаний, относящихся к существенно отличающимся по целям и задачам предметным областям и необходимых для обоснования свойств материалов и конструкций, требует развития методов и моделей, отражающих закономерности возникновения и развития явлений, процессов, событий и состояний, обусловливающих повреждение и разрушение конструкций. Одна из таких моделей реализована на основе трансдисциплинарного подхода, позволяющего сформулировать цели и задачи, объединяющие знания и данные, а также обеспечивающие понимание специалистами различных предметных областей требуемых результатов и способов их достижения. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Трансдисциплинарная модель отражает формальную (логическую) связь между деградационными процессами, обусловленными ими повреждениями, критериями предельных состояний и внезапными отказами. При этом определенные совокупности задач отражают взаимоувязанные цели для различных стадий развития повреждений и информационных аспектов, характеризующих функциональные, технические и физические состояния материалов и конструкций из них изготовленных. Модель обеспечивает взаимоувязанные решения множества междисциплинарных и дисциплинарных задач. ВЫ-ВОДЫ. Разработана трансдисциплинарная модель, отражающая междисциплинарные и дисциплинарные цели и задачи для обоснования свойств материалов и конструкций. Ясность целей, задач, необходимых данных, знаний обеспечивает эффективное взаимодействие между экспертами и специалистами в решении задач.

Ключевые слова: трансдисциплинарный подход, междисциплинарные задачи, коллективные решения, техническое состояние, деградация, отказы.

Информация о статье. Дата поступления 01 июня 2018 г.; дата принятия к печати 23 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Берман А.Ф., Николайчук О.А., Юрин А.Ю. Трансдисциплинарная модель задачи обоснования свойств материалов и конструкций // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 17–25. DOI: 10.21285/1814-3520-2018-8-17-25

TRANSDISCIPLINARY MODEL FOR MATERIAL AND STRUCTURE PROPERTIES SUBSTANTIATION PROBLEM

A.F. Berman, O.A. Nikolaychuk, A.Yu. Yurin

Matrosov Institute for System Dynamics and Control Theory

¹Берман Александр Фишелевич, доктор технических наук, профессор, главный научный сотрудник, e-mail: bafbam@mail.ru

Alexander F. Berman, Doctor of technical sciences, Professor, Chief Researcher, e-mail: bafbam@mail.ru

²Николайчук Ольга Анатольевна, доктор технических наук, профессор, ведущий научный сотрудник, e-mail: nikoly67@mail.ru

Olga A. Nikolaychuk, Doctor of technical sciences, Professor, Leading Researcher, e-mail: nikoly67@mail.ru ³Юрин Александр Юрьевич, кандидат технических наук, заведующий лабораторией Института динамики систем и теории управления, доцент кафедры автоматизированных систем ИрНИТУ, e-mail: j80@yandex.ru Alexander Yu. Yurin, Candidate of technical sciences, Head of the Laboratory of the Institute of System Dynamics and Control Systems, Associate Professor of the Department of Automated Systems, e-mail: iskander@irk.ru

17

of Siberian Branch of the Russian Academy of Sciences (IDSTU SB RAS), 134, Lermontov St., Irkutsk, 664033, Russian Federation Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russian Federation

ABSTRACT. The PURPOSE of the paper is to develop a transdisciplinary model that provides an integrated solution for interdisciplinary and disciplinary problems as well as creates the conditions for the specialists in different subject areas to participate in their solution. METHODS. Integration of data and knowledge referring to the subject areas significantly different in goals and objectives with the properties of materials and structures needed for the substantiation require the development of methods and models that can reflect the origination and development patterns of phenomena, processes, events and states causing the damage and destruction of structures. One of these models is implemented on the basis of the transdisciplinary approach that allows to formulate the goals and objectives combining the knowledge and data and providing the specialists in various subject areas with the understanding of the desired results and their achievement methods. RESULTS AND THEIR DISCUSSION. A transdisciplinary model reflects a formal (logical) relationship between degradation processes, damages caused by them, limit state criteria and sudden failures. At the same time, a certain set of objectives reflects the interconnected objectives for different development stages of damages and information aspects characterizing functional, technical and physical conditions of the materials and structures produced from them. The model provides the interconnected solutions of many interdisciplinary and disciplinary problems. CONCLUSIONS. The transdisciplinary model has been developed that reflects the interdisciplinary and disciplinary purposes and objectives to justify the properties of materials and structures. The clearness of purposes, objectives and necessary data and knowledge provides effective interaction between the experts and specialists in solving problems.

Keywords: transdisciplinary approach, interdisciplinary problems, collective decisions, technical condition, degradation, failures

Information about the article. Received June 01, 2018; accepted for publication July 23, 2018; available online August 31, 2018.

For citation. Berman A.F., Nikolaychuk O.A., Yurin A.Yu. Transdisciplinary model for material and structure properties substantiation problem. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 17–25. DOI: 10.21285/1814-3520-2018-8-17-25. (In Russian).

Введение

Создание новых методов, обеспечивающих надежность и безопасность сложных машин и конструкций, требует использования и обработки огромных объемов данных и знаний различных научных, технических и научно-технических дисциплин [1–4]. Проблема интеграции знаний в настоящее время имеет принципиальное значение и ее эффективное решение невозможно без моделей, отражающих взаимоувязанные знания экспертов и специалистов различных предметных областей и современных информационных технологий [5–8]. Интег-

рация данных и знаний, необходимых для обоснования свойств материалов и конструкций, требует развития методов и моделей, отражающих закономерности возникновения и развития явлений, процессов, событий и состояний, обусловливающих повреждение и разрушение конструкций. Целью исследования является разработка трансдисциплинарной модели, обеспечивающей взаимоувязанное решение междисциплинарных и дисциплинарных задач и условий для участия в их решении специалистов различных предметных областей.

Методы исследования

Интеграция данных и знаний, относящихся к существенно отличающимся по целям и задачам предметным областям и необходимым для обоснования свойств материалов и конструкций, требует развития методов и моделей, отражающих закономерности возникновения и развития явлений,

процессов, событий и состояний, обусловливающих повреждение и разрушение конструкций. Одна из таких моделей реализована на основе трансдисциплинарного подхода, позволяющего сформулировать цели и задачи, объединяющие знания, данные и обеспечивающие понимание специалиста-

ми различных предметных областей требуемых результатов и способов их достижения.

Одним из подходов решения рассматриваемой задачи является изучение механо-физико-химических закономерностей процессов деградации материалов и конструкций при различных (в том числе неопределенных) сочетаниях внешних воздействий, свойств материалов и элементов, изготовленных из них. При этом желательно отражать формальную (логическую) связь между деградационными процессами, обусловленными ими повреждениями, критериями предельных состояний и внезапными отказами. Подобная постановка проблемы требует реализации исследования, обеспечивающего взаимоувязанные решения множества междисциплинарных и дисциплинарных задач. При этом определенные совокупности задач должны отражать единые взаимоувязанные цели для различных стадий развития повреждений и информационных аспектов, характеризующих функциональные, технические и физические состояния материалов и элементов из них изготовленных. Для этого предлагается использовать трансдисциплинарный подход как особую онтологию и методологию науки.

Использование трансдисциплинар-

ного подхода обеспечивает интеграцию знаний и повышает качество принимаемых решений. «Трансдисциплинарность» [9-12] вырастает из «междисциплинарности» как обобщение и смысловое обогащение последней. В смысле, приданном этому термину Ж. Пиаже, он обозначал ситуацию, когда междисциплинарное исследование переходит к более тесному объединению ранее отдельных друг от друга, но взаимодействующих между собою дисциплин, к некой единой исследовательской системе, в которую эти дисциплины входят как составные части, но уже без устойчивых границ между ними. Согласно Пиаже, «трансдисциплинарность» является более высокой стадией развития методологии междисциплинарности. В работах [13-16] дается философское описание существа трансдисциплинарности: «наука сегодня развивается, порождая все более сложные трансдисциплинарные комплексы знаний. Полидисциплинарность (мультидисциплинарность) - это неинтегративная смесь дисциплинарных подходов, в которой каждая дисциплина сохраняет свою собственную методологию и свои теоретические допущения, не видоизменяя и не дополняя их, подвергаясь воздействию со стороны других дисциплин...».

Трансдисциплинарная модель задачи

Назначение трансдисциплинарной модели задач - обеспечить эффективное взаимодействие экспертов и специалистов при решении задач обоснования свойств материалов и конструкций на различных стадиях деградации. При этом свойства представляются совокупностью взаимообусловленных параметров, характеризующих функциональные, технические и физические требования, соответствующие комнаучно-технических дисциплин. Представлена структура множества взаимосвязанных междисциплинарных целей в зависимости от искомых свойств материалов и конструкций, а также обоснованы основные междисциплинарные задачи, направленные на достижение этих целей.

Информационные аспекты модели

(табл. 1) представлены иерархическими уровнями и отражают обоснование паратребуемых функциональных метров свойств, а также обоснование параметров, обеспечивающих их технические и физические свойства. Информационные уровни объединяют информацию об объекте, характеризующую его с различных теоретических точек зрения нескольких дисциплин и многообразия типов свойств, связей и состояний. Параметры каждого информационного уровня характеризуют одни и те же состояния во времени, но представлены различными свойствами, характеризуемыми знаниями некоторой совокупности дисциплин. Это позволяет исследовать объект в разных аспектах с участием большего числа

экспертов (специалистов) и на основе полученных знаний синтезировать целостное представление и обеспечивать моделирование в областях знаний далеких друг от друга, как по терминологическим понятиям, так и уровню математической проработки задач.

Стадии динамики представлены параметрами повреждения и разрушения, характеризующими предельные состояния, на уровне субмикро-, микро-, мезо-, и макроструктуры.

Дискретные состояния обеспечивают выделение классов, характеризующих смену состояний объекта ограниченных назначенными параметрами. Искомые свойства материалов и конструкций являются результатом решения сформулированных междисциплинарных и дисциплинарных задач расчета (обоснования) совокупности параметров, характеризующих функциональные, технические и физические требования для предложенных стадий деградации.

Например, «Технические требования, обеспечивающие требования надежности и свойства безопасности» и характеризующие технический уровень, представлены параметрами прочностной и ресурсной надежности, виброустойчивости, технического обслуживания и ремонта, мониторинга и диагностирования и т.д. В случае несовершенства или ошибок, например, в выборе материала или конструкции элементов и компонентов, методах расчета прочности, ресурса или обеспечения герметичности, может произойти разрушение или разгерметизация резервуара или сосуда с выбросом или истечением опасных веществ. При недостаточных объемах, составе или периодичности контроля параметров технического состояния может иметь место неконтролируемая деградация, приводящая к внезапным отказам.

«Физические требования, обеспечивающие технические требования и свойства безопасности» представлены параметрами физики, химии и механики прочности и разрушения, которые отражают процессы на ранних стадиях, характеризуемых уровнем структуры материала (субмикро-, микро- и

мезоуровень) и опасность хрупкого разрушения элемента (макроуровень). Физические свойства безопасности зависят от параметров свойств и структуры материала элементов сложных технических систем (СТС), характеризующих их сопротивление зарождению и развитию трещин, ограничения на размеры трещин для исключения хрупкого разрушения конструкции, возможность их своевременного выявления физическими методами. На критических стадиях физические свойства зависят, например, от температуры вспышки или детонационной стойкости используемых рабочих сред и материалов или от их радиоактивности и т.п.

Каждая Междисциплинарная Задача класса (МДЗклс) включает набор Дисциплинарных Задач (ДЗ) (монозадач), сохраняющих статус специализации, взаимоувязанное решение которых осуществляется в аспекте целей МДЗклс и адекватного использования знаний и данных соответствующих дисциплин и экспертов. В табл. 2 показан набор дисциплинарных задач и дисциплин, обеспечивающих решение МДЗ информационного уровня «Рассчитать технические требования...».

Структура Трансдисциплинарной модели задачи «Обеспечить свойства материала и конструкции»: $S_{TDP} = \{MDP_S, MDP_I, MDP_{C/S}, R\}$, где S_{TDP} — модель трансдисциплинарной задачи; MDP_S — междисциплинарные задачи (МЗ) обоснования свойств для различных стадий; MDP_I — МЗ обоснования свойств для различных информационных уровней; $MDP_{C/S}$ — МЗ каждого класса состояний; R — множество отношений между задачами.

Выявление взаимосвязи поврежденности с физико-химическими свойствами материала и конструктивными особенностями объекта (концентрация напряжений, масштабный фактор и т.п.) позволяет повысить точность обоснования критериев отказов и предельных состояний, являющихся одним из главных условий обеспечения прочностной и ресурсной надежности.

Правильное установление этих критериев обеспечивает установление периодичности и эффективных методов и средств

Таблица 1

Модель трансдисциплинарной задачи обоснования свойств материала и конструкции

Table 1

Model of the transdisciplinary substantiation problem of material and structure properties

ot material and structure properties												
			Междисциплинарные цели для стадий динамики									
			состояний – обосновать свойства материала									
			и конструкции для каждой стадии состояния, МДЦ _{сд}									
			Междисциплинарные задачи стадий, МДЗ _{сд}									
Состав и структура целей и задач			МДЗ _{сд} -1. Обеспечить свойства	МДЗ _{СД} -2. Обеспечить свойства	МДЗ _{СД} -3. Обеспечить свойства	МДЗ _{сд} -4. Обеспечить свойства						
				материала и конструкции в	материала и конструкции в	материала и кон- струкции в <i>нера-</i>						
			<i>исправном</i> состоянии	неисправном состоянии	неработоспо- собном состоянии	ботоспо- собном опасном состоянии						
		МДЗ _{иу} -1.	Рассиитать	Tanamethi myuku								
호		Рассчитать требо-	Рассчитать параметры функциональных свойств материала и конструкции									
обосно-		вания	_									
0		к свойствам мате-	для исправного	ДЛЯ	для неработоспо-	для неработоспособ-						
¥.		риала и конструк-	СОСТОЯНИЯ	неисправного состояния	собного	ного опасного со-						
_ Диу Тиу		ции, обеспечиваю-	000107111171	000107111171	состояния	стояния						
호탈	_	щие	МДЗ _{КлС} -1.1	МДЗ _{КлС} -1.2	МДЗ _{КлС} -1.3	МДЗ _{КлС} -1.4						
Ä, Ä,	Междисциплинарные задачи уровней, МДЗиу	надежность МДЗ _{иу} -2.	Рассчитать параметры технических свойств материала и кон-									
윤		Рассчитать	струкции									
і исследования на информационных уровнях ния для информационных уровней, МДЦиу		технические требования, обеспечивающие	для исходного состояния	·	для предельного состояния	для состояния отказа						
на ин		адачи	адачи	адачи	адачи	адачи	свойства надежности	МДЗ _{КлС} -2.1	МДЗ _{КлС} -2.2	МДЗ _{КлС} -2.3	МДЗклс-2.4	
R N C		_MДЗ _{иу} -3.			аметры физическ							
E B H		HPI	HPI	HPI	H	HP	НЫ	Рассчитать		свойств матери	ала и конструкци	IИ
сследо и япд н		физические требования, обеспечивающие	для фиксируемого		для состояния недопустимого	для состояния разрушения						
Междисциплинарные цели ис вать требования		технические требования	состояния МДЗ _{КлС} -3.1	вреждения МДЗ _{КлС} -3.2	повреждения МДЗ _{клС} -3.3	МДЗ _{КлС} -3.4						
		МДЗ _{иу} -4. Рассчитать пара- метры деградаци-	Рассчитать параметры допустимого деградационного процесса									
			обес функ техни	онных процессов, обеспечивающие функциональные, технические и фи- зические требова- ния	на субмикро- уровне МДЗ _{клС} -4.1	на микроуровне МДЗ _{КлС} -4.2	на мезоуровне МДЗ _{КлС} -4.3	на макроуровне МДЗ _{клс} -4.4				

Примечание. Трансдисциплинарная Цель (ТЦ) – обосновать свойства материала и конструкции; трансдисциплинарная задача (ТДЗ) – обеспечить свойства материала и конструкции на основе объединения данных и знаний совокупности дисциплин и экспертов.

Таблица 2

Дисциплинарные задачи обоснования свойств материала и конструкции Table 2

Disciplinary problems of material and structure properties substantiation

		Discipilially proble	ems of material and structure pro	ายยาแยง จนมจเสาแสแบบ								
МДЗ _{иу} -2. Рассчитать технические требования, обеспечивающие свойства материала и конструкции на основе показателей прочностной и ресурсной надежности			Основные дисциплинарные задачи	Основные дисциплины, представленные (увязанные) онтологией								
ДЗ _{СД} 2.1-2.4: Обосновать свойства материала и конструкции для различных состояний материала и объекта	Рассчитать параметры технических свойств материала	Исходное состояние МДЗ _{Кл} с-2.1.	ДЗ-2.1.1. Обосновать и обеспечить химический состав, структуру и механические свойства используемых материалов и др.	металлургия; материаловедение; металлография; спектральный ана- лиз; обработка металлов давлением; термическая обработка материалов и др.								
			Д3-2.1.2. Обосновать и обеспечить допустимую дефектность изготовления и др.	обработка давлением; технология ма- шиностроения; сварочное производ- ство; дефектоскопия и др.								
			Д3-2.1.3. Обосновать и обеспечить запасы несущей способности, прочности и ресурса по критериям механической прочности, ползучести и коррозионной стойкости и др.	сопротивление материалов; физико- химическая механика материалов; детали машин; механика разрушения; ползучесть и др.								
		Допустимое состояние МДЗклс-2.2. Предельное состояние МДЗклс-2.3.	Д3-2.2.1. Обосновать возможные и допустимые виды поврежденности различного происхождения и др.	детали машин; физико-химическая механика материалов; механика разрушения; коррозионная стойкость; ползучесть и др.								
			Д3-2.2.2. Обосновать методы и средства мониторинга и диагностирования возможных повреждений и др.	методы и средства периодического и непрерывного контроля параметров; дефектоскопия; металлография и др.								
			ДЗ-2.3.1. Обосновать предельные состояния по критериям прочности, ресурса, трещиностойкости, коррозионной стойкости, тепло- и жаропрочности, химической стойкости; обосновать модели оценки остаточного ресурса и т.п.	сопротивление материалов; механика разрушения; коррозионная стойкость; термостойкость; химическая стойкость; износостойкость; биостойкость; физико-химическая механика разрушения; физика прочности, ресурса и								
			ДЗ-2.3.2. Обосновать предвестники и диагностические признаки проектных и возможных предельных состояний. Обеспечить их выявление средствами мониторинга и диагностирования и др.	др. методы и средства периодического и непрерывного контроля параметров и др.								
		Состояние отказа МДЗ _{Кл} с-2.4.	Д3-2.4.1. Обосновать и обеспечить выявление запредельных состояний по критериям прочности, коррозионной стойкости, трещиностойкости, теплостойкости, жаропрочности, химической стойкости и т.п. и др.	физико-химическая механика разрушения; сопротивление материалов; механика разрушения; коррозионная стойкость; термостойкость; химическая стойкость; износостойкость; биостойкость; физика прочности и ре-								
			Д3-2.4.2. Обосновать предвестники и диагностические признаки проектных и фактических отказов и обеспечить их выявление и др.	сурса; методы и средства периодиче- ского и непрерывного контроля пара- метров и др.								

диагностирования и прогнозирования свойств материалов и конструкций.

Представление задачи в виде трансдисциплинарной модели позволяет всем участникам создания и применения сложных объектов в достаточной степени понять методы и средства решения мультидисциплинарной проблемы благодаря отражению целей и задач междисциплинарных исследования для некоторых предметных аспектов (информационных уровней). Модель обеспечивает обмен индивидуальными знаниями и решение задач в реальном масштабе времени посредством специализированных компьютерных систем. Трансдисциплинарный подход в определенной степени уже используется в технике, медицине, образовании и философии науки [17–20].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований: проекты РФФИ №18-08-00560 и №18-07-01164.

Библиографический список

- 1. Махутов Н.А. Критериальная база прочности, ресурса, надежности, живучести и безопасности машин и человеко-машинных комплексов // Проблемы машиностроения и надежности машин. 2013. № 5. С. 25–36.
- 2. Matvienko Ju.G., Pisarev V.S., Eleonsky S.I., Chernov A.V. Combined implementing the crackof compliance method and speckle interferometry for a determination of fracture mechanics parameters // Fatigue and Fracture of Engineering Materials and Structures. 2014. Vol. 37. № 12. P. 1306–1318.
- 3. Махутов Н.А., Резников Д.О., Петров В.П. Особенности обеспечения безопасности критических инфраструктур // Безопасность в техносфере. 2014. Том 3. № 1. С. 3–14.
- 4. Махутов Н.А., Берман А.Ф., Николайчук О.А. Некоторые принципы самоорганизации для управления риском техногенных катастроф // Проблемы анализа риска. 2015. Том 12. № 4. С. 34–45.
- . 5. Берман А.Ф. Информатика катастроф // Проблемы безопасности и ЧС. 2012. № 3. С. 17–37.
- 6. Берман А.Ф., Николайчук О.А., Юрин А.Ю. Интеллектуальная информационная система анализа отказов // Проблемы машиностроения и надежности машин. 2012. № 4. С. 88–96.
- 7. Berman A.F., Nikolaychuk O.A., Yurin A.Yu., Pavlov A.I. A methodology for the investigation of there reliability and safety of unique technical systems. PartO // Journal of Risk and Reliability. UK. February. 2014. № 228 (1). P. 29–38.
- 8. Berman A.F., Maltugueva G.S., Yurin A.Y. Application of case-based reasoning and multi-criteria decision-making methods for material selection in petrochemistry // ProcIMechE. Part L: J Materials: Design and Applications. 2018. Vol. 232(3). P. 204–212. DOI: 10.1177/1464420715620919
- 9. Nicolescu B. Transdisciplinarity: past, present and future. In B. Haverkort& C. Reijntjes (Eds.), Moving Worldviews Reshaping sciences, policies and practices for endogenous sustainable development//COMPAS Editions. 2006. P. 142–166.
- 10. Nicolescu B. From Modernity to Cosmodernity Science, Culture, and Spirituality. State University of New York (SUNY) Press. 2014.

- 11. Benessh E.C., Lamb L.E., Connors S.K., Farmer G.W., Fuh K.C., Hunleth J., Montgomery K.L., Ramsey A.T., Moley K.H., Colditz G.A., &Gehlert S.J. A case study approach to train early stage investigators in transdisciplinary research //Transdisciplinary Journal of Engineering and Science. 2015 Dec. 6. P.13–22.
- 12. Gehlert S, Hall K, Vogel A, Hohl S, Hartman S, Nebeling L, Redline S, Schmitz K, Thornquist M, Patterson R, Thompson B. Advancing Transdisciplinary Research: The Transdisciplinary Research on Energetics and Cancer Initiative. J Transl Med Epidemiol. 2014 Sep; 2(2):1032. PubMed PMID: 25356437; PubMed Central PMCID: PMC4209479.
- 13. Киященко Л.П., Моисеев В.И. Философия трансдисциплинарности. М.: ИФРАН. 2009. 205 с.
- 14. Бажанов В., Шольц Р.В. Трансдисциплинарность как трансдискурсивность // Трансдисциплинарность в философии и науке: подходы, проблемы, перспективы. М.: Изд. Дом «Навигатор». 2015. С. 262–280.
- 15. Бажанов В., Шольц Р.В. Трансдисциплинарность: в поисках оснований синтеза научного знания // Трансдисциплинарность в философии и науке: подходы, проблемы, перспективы. М.: Изд. Дом «Навигатор». 2015. С. 280–301.
- 16. Бажанов В., Шольц Р.В. От междисциплинарности к трансдисциплинарности: мосты между философией науки и философией культуры // Трансдисциплинарность в философии и науке: подходы, проблемы, перспективы. М.: Изд. Дом «Навигатор». 2015. С. 416–432.
- 17. Берман А.Ф., Николайчук О.А., Тюленев Р.П. Трансдисциплинарная модель задач для обеспечения безопасности технических объектов // Междунар. науч.-практ. конф. «Логистика и экономика ресурсосбережения и энергосбережения в промышленности» (г. Тула, 15–17 ноября 2017 г.). Тула, 2017. С. 234–239.
- 18. Черникова И.В. Мышление в аспекте трансдисциплинарных исследований // Бюллетень сибирской медицины. 2014. Том 13. № 4. С. 149–155.
- 19. Колесникова И.А. Непрерывное образование как феномен XXI века: новые ракурсы исследования [Электронный ресурс]. URL: http://lll21.petrsu.ru/journal/article.php?id=1941. (12.05.2018).

20. Кудряшев А.Ф., Елхова О.И. Общенаучная картина мира: старое в новом одеянии // Вестник

Башкирского университета. 2013. Т. 18. № 4. C. 1255–1259.

References

- 1. Makhutov N.A. A criterion base for assessment of strength, lifetime, reliability, survivability, and security of machines and man-machine systems. *Problemy mashinostroeniya i nadezhnosti mashin* [Journal of Machinery Manufacture and Reliability], 2013, no. 5, pp. 25–36. (In Russian).
- 2. Matvienko Ju.G., Pisarev V.S., Eleonsky S.I., Chernov A.V. Combined implementing the crack of compliance method and speckle interferometry for a determination of fracture mechanics parameters. Fatigue and Fracture of Engineering Materials and Structures, 2014, vol. 37, no. 12, pp. 1306–1318. (In Russian).
- 3. Makhutov N.A., Reznikov D.O., Petrov V.P. Specific features of critical infrastructures safety ensuring. *Bezopasnost' v tekhnosfere* [Safety in Technosphere], 2014, vol. 3, no. 1, pp. 3–14. (In Russian).
- 4. Makhutov N.A., Berman A.F., Nikolaichuk O.A. Some principles of self-organization for risk management of man-made disasters. *Problemy analiza riska* [Problems of Risk Analysis], 2015, vol. 12, no. 4, pp. 34–45. (In Russian).
- 5. Berman A.F. Informatics of catastrophes. *Problemy bezopasnosti i chrezvychajnyh situacij* [Safety and Emergency Problems], 2012, no. 3, pp. 17–37. (In Russian).
- 6. Berman A.F., Nikolaichuk O.A., Yurin A.Yu. Intellectual data system for analyzing failure. *Problemy mashinostroeniya i nadezhnosti mashin* [Journal of Machinery Manufacture and Reliability], 2012, no. 4, pp. 88–96. (In Russian).
- 7. Berman A.F., Nikolaychuk O.A., Yurin A.Yu., Pavlov A.I. A methodology for the investigation of the reliability and safety of unique technical systems. PartO. Journal of Risk and Reliability. February, 2014, no. 228 (1), pp. 29–38.
- 8. Berman A.F., Maltugueva G.S., Yurin A.Y. Application of case-based reasoning and multi-criteria decision-making methods for material selection in petrochemistry. ProcIMechE. Part L: J Materials: Design and Applications. 2018, vol. 232(3), pp. 204–212. DOI: 10.1177/1464420715620919
- 9. Nicolescu B. Transdisciplinarity: past, present and future. In B. Haverkort & C. Reijntjes (Eds.), Moving Worldviews Reshaping sciences, policies and practices for endogenous sustainable development//COMPAS Editions, 2006, pp. 142–166.
- 10. Nicolescu B. From Modernity to Cosmodernity Science, Culture, and Spirituality. State University of NewYork (SUNY) Press, 2014.
- 11. Benessh E.C., Lamb L.E., Connors S.K., Farmer G.W., Fuh K.C., Hunleth J., Montgomery K.L., Ramsey A.T., Moley K.H., Colditz G.A., &Gehlert S.J. A case study approach to train early stage investigators in transdisciplinary research. Transdisciplinary Journal of Engineering and Science. 2015 Dec 6, pp. 13–22.
- 12. Gehlert S., Hall K., Vogel A., Hohl S., Hartman S.,

- Nebeling L., Redline S., Schmitz K., Thornquist M., Patterson R., Thompson B. Advancing Transdisciplinary Research: The Transdisciplinary Research on Energetics and Cancer Initiative. J Transl Med Epidemiol. 2014 Sep; 2(2):1032. PubMed PMID: 25356437; PubMed Central PMCID: PMC4209479.
- 13. Kiyashchenko L.P., Moiseev V.I. *Filosofiya transdisciplinarnosti* [Philosophy of transdisciplinarity]. Moscow: IFRAN Publ., 2015, 564 p. (In Russian).
- 14. Bazhanov V., Shol'c R.V. *Transdisciplinarnost' kak transdiskursivnost'* [Transdisciplinarity as a transdiscursivity]. *Transdisciplinarnost' v filosofii i nauke: podhody, problemy, perspektivy* [Transdisciplinarity in philosophy and science: approaches, problems, prospects]. Moscow: Dom «Navigator» Publ., 2015, pp. 262–280. (In Russian).
- 15. Bazhanov V., Shol'c R.V. *Transdisciplinarnost': v poiskah osnovanij sinteza nauchnogo znaniya* [Transdisciplinarity: searching for the basis of scientific knowledge synthesis]. *Transdisciplinarnost' v filosofii i nauke: podhody, problemy, perspektivy.* [Transdisciplinarity in philosophy and science: approaches, problems, prospects]. Moscow: Dom «Navigator» Publ., 2015, pp. 280–301. (In Russian).
- 16. Bazhanov V., Shol'c R.V. *Ot mezhdisciplinarnosti k transdisciplinarnosti: mosty mezhdu filosofiej nauki i filosofiej kul'tury* [From interdisciplinarity to transdisciplinarity: links between the philosophy of science and the philosophy of culture]. *Transdisciplinarnost' v filosofii i nauke: podhody, problemy, perspektivy* [Transdisciplinarity in philosophy and science: approaches, problems, prospects]. Moscow: Dom «Navigator» Publ., 2015, pp. 416–432. (In Russian).
- 17. Berman A.F., Nikolajchuk O.A., Tyulenev R.P. *Transdisciplinarnaya model' zadach dlya obespecheniya bezopasnosti tekhnicheskih ob"ektov* [Transdisciplinary model of tasks for ensuring engineering object safety]. *Trudy Mezhdunarodnoj nauchno-prakticheskoj konferencii "Logistika i ekonomika resursosberezheniya i energosberezheniya v promyshlennosti"* [Proceedings of the International scientific and practical conference "Logistics and Economy of Resource Saving and Energy Saving in Industry", Tula, 15–17 November 2017]. Tula, 2017, pp. 234–239. (In Russian).
- 18. Chernikova I.V. Thought in the aspect of transdisciplinary research. *Byulleten' sibirskoj mediciny* [Bulletin of the Siberian Medicine], 2014, vol. 13, no. 4, pp. 149–155. (In Russian).
- 19. Kolesnikova I.A. *Nepreryvnoye obrazovaniye kak fenomen XXI veka: novyye rakursy issledovaniya* [Continuing education as a phenomen of the twenty-first century: new aspects of studies]. URL:http://lll21.petrsu.ru/journal/article.php?id=1941. (accessed 12 May 2018).

20. Kudryashev A.F., Elhova O.I. General scientific picture of the world: the old in a new GARB. Vestnik

Bashkirskogo universiteta [Bulletin of Bashkir University], 2013, vol. 18, no. 4, pp. 1255–1259. (In Russian).

Критерии авторства

Берман А.Ф., Николайчук О.А., Юрин А.Ю. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Authorship criteria

Berman A.F., Nikolaychuk O.A., Yurin A.Yu. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

25

Оригинальная статья / Original article УДК 621.833-187:531.1

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-26-33

ИЗМЕНЕНИЕ ТОЧНОСТИ ИЗГОТОВЛЕНИЯ ЦИКЛОИДАЛЬНЫХ КОЛЕС ПРИ СОХРАНЕНИИ КИНЕМАТИЧЕСКИХ ПАРАМЕТРОВ ПЕРЕДАЧИ

© Е.А. Ефременков¹, С.К. Ефременкова²

Национальный исследовательский Томский политехнический университет, 634050, Российская Федерация, г. Томск, пр. Ленина, 30.

РЕЗЮМЕ. ЦЕЛЬ. В данной работе целью является поиск возможности снижения точности изготовления профильных поверхностей колес при сохранении точности передачи с промежуточными телами качения и свободной обоймой для снижения себестоимости изготовления ответственных деталей. МЕТОДЫ. Учитывая особенности зацепления передачи с промежуточными телами качения и свободной обоймой, выполнен анализ точности изготовления по аналитическим методам полной и неполной взаимозаменяемости. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. При снижении точности деталей без изменения сочетания посадок технологический зазор в зацеплении передачи с промежуточными телами качения и свободной обоймой увеличивается в арифметической прогрессии (при снижении точности на 1 квалитет зазор увеличивается минимум на 20 мкм), что может отрицательно сказаться на работе передачи. В то же время при изменении сочетания посадок и снижении точности деталей возможно уменьшение технологических зазоров в зацеплении передачи с промежуточными телами качения и свободной обоймой. Наиболее вероятно возникновение предельного технологического зазора при изготовлении деталей по верхним или нижним отклонениям допуска на размер. При изменении сочетания посадок сопрягаемых деталей с Н7-h6-h7 до Н8h8-k7 удается уменьшить максимальный технологический зазор на 12 мкм, а предельные зазоры – до 0,008 мм. ВЫВОДЫ. Установлено, что возможно подобрать посадки сопряжения контактирующих деталей в передаче с промежуточными телами качения и свободной обоймой так, чтобы одновременно снизить точность их изготовления и оставить точность передачи не ниже начального уровня изготовления. Подбор оптимального сочетания посадок и точностей позволит снизить себестоимость изготовления ответственных деталей передачи с промежуточными телами качения и свободной обоймой и повысить конкурентоспособность этих передач на рынке.

Ключевые слова: точность изготовления, циклоидальная передача, кинематические параметры, допуски, отклонения, технологический зазор.

Информация о статье. Дата поступления 04 мая 2018 г.; дата принятия к печати 19 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Ефременков Е.А., Ефременкова С.К. Изменение точности изготовления циклоидальных колес при сохранении кинематических параметров передачи // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 26–33. DOI: 10.21285/1814-3520-2018-8-26-33

CHANGING PRODUCTION ACCURACY OF CYCLOIDAL WHEELS AT PRESERVATION OF TRANSMISSION KINEMATIC PARAMETERS

E. A. Efremenkov, S.K. Efremenkova

National Research Tomsk Polytechnic University, 30, Lenin pr., Tomsk, 634050, Russian Federation

ABSTRACT. The **PURPOSE** of this paper is search for the opportunity to decrease the production accuracy of wheel profile surfaces when the accuracy of transmission with intermediate rolling bodies and a free bracket remains the same

¹Ефременков Егор Алексеевич, кандидат технических наук, доцент отделения материаловедения инженерной школы новых производственных технологий, e-mail: ephrea@mail.ru

Egor A. Efremenkov, Candidate of technical sciences, Associate Professor of the Materials Science Department of the Engineering school of Advanced Manufacturing Technologies, e-mail: ephrea@mail.ru

²Ефременкова Светлана Константиновна, ведущий эксперт, отдел планирования, организации и управления учебным процессом, e-mail: efremenkova@tpu.ru

Svetlana K. Efremenkova, Leading Expert of the Academic Services Office, e-mail: efremenkova@tpu.ru

0

Машиностроение и машиноведение Mechanical Engineering and Machine Science

to reduce the production cost of critical parts. **METHODS**. The production accuracy analysis is carried out using the analytical methods of complete and incomplete interchangeability taking into account the features of transmission linkage with intermediate rolling bodies and a free bracket. **RESULTS AND THEIR DISCUSSION**. When part accuracy decreases without any change in fit combinations the manufacturing clearance in the transmission linkage with intermediate rolling bodies and a free bracket increases as an arithmetic progression (when the accuracy decreases by one accuracy grade the clearance increases at 20µm minimum). It can have a negative effect on transmission operation. At the same time the change in fit combination and decrease in part accuracy results in the reduced manufacturing clearances in the transmission linkage with intermediate rolling bodies and a free bracket. The origination of a limit manufacturing clearance is the most probable under production of parts by upper or lower tolerance deviations of size. When changing fit combinations of mate parts from **H7-h6-h7** to **H8-h8-k7** it is possible to reduce the maximum manufacturing clearance by 12 µm and limit clearances up to 8 µm. **CONCLUSIONS**. It is found that it is possible to select the combinations of mate part fits in the transmission with intermediate rolling bodies and a free bracket to reduce their production accuracy on one side and preserve the transmission accuracy not lower than the start production level on the other. The selection of optimal fit combination and accuracies will allow to reduce the production cost of vital parts of transmission with intermediate rolling bodies and a free bracket as well as to increase the competitiveness of these transmissions on the market.

Keywords: production accuracy, cycloidal transmission, kinematic parameters, tolerances, size deviations, manufacturing clearance

Information about the article. Received May 04, 2018; accepted for publication July 19, 2018; available online August 31, 2018.

For citation. Efremenkov E.A., Efremenkova S.K. Changing production accuracy of cycloidal wheels at preservation of transmission kinematic parameters. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 6, pp. 26–33. DOI: 10.21285/1814-3520-2018-6-26-33. (In Russian).

Введение

Современные механические, электромеханические и исполнительные механизмы характеризуются качеством, точностью и надежностью применяемых передач в их узлах. Применение тех или иных передач напрямую влияет на эффективность работы механизмов.

С повышением требований к механизмам возникает потребность в передачах, способных наиболее полно удовлетворить требованиям заказчика. Наиболее перспективно, с точки зрения обеспечения необходимых технических характеристик, использовать передачи с промежуточными телами качения (ПТК) [1–4]. Эти передачи получили широкое распространение в промышленности, на их долю приходится основная масса

изготовляемых механизмов с ПТК, как в России, так и за ее пределами [5-8]. Основными трудностями при изготовлении передач с ПТК является высокая точность ответственных, несущих деталей передачи [9-12]. Это требует больших затрат времени при изготовлении механизмов на базе данных передач и сказывается на себестоимости изделий. В настоящее время производители заинтересованы в снижении точности ответственных деталей передач с ПТК, контактирующих профильных звеньев, без ущерба их технических характеристик. Таким образом, поиск возможности снижения точности изготовления профильных поверхностей контактирующих звеньев при сохранении точности передачи с ПТК является актуальным.

Постановка задачи

Наиболее перспективной из передач с ПТК является передача с промежуточными телами качения и свободной обоймой (ПТКСО) [13–15].

Эта передача (рис. 1) позволяет наиболее полно обеспечивать требуемый комплекс технических характеристик [16]. Из

описания работы этой передачи [17, 18] следует, что ответственными деталями являются колеса с циклоидальным профилем и цилиндрические тела качения. Профильные колеса и тела качения выполняются с высокой точностью (по 6–7 квалитету), которая может определять временные затраты на

производство механизма в целом. Все эти детали являются тяжело нагруженными и выполняются с термообработкой на высокую твердость (максимальную для выбранной стали). Основная сложность в изготовлении профильных колес состоит в получении точного циклоидального профиля наряду с высокой твердостью точной детали.

Таким образом, необходимым является выполнение анализа возможности снижения точностей изготовления ответственных деталей этих передач, с сохранением качества зацепления и, как следствие, точности работы механизма. Это позволит снизить себестоимость производственного процесса деталей и всего механизма в целом.

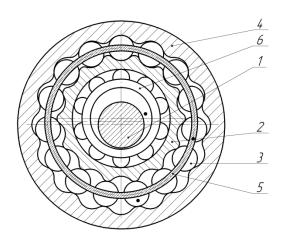


Рис. 1. Передача с промежуточными телами качения и свободной обоймой: 1 – входной вал с эксцентриком (генератор); 2 – кулачок; 3 – промежуточные тела качения; 4 – венец; 5 – сепаратор; 6 – подшипник качения

Fig. 1. Transmission with intermediate rolling bodies and a free bracket: 1 – input shaft with an eccentric (generator); 2 – cam; 3 – intermediate rolling bodies; 4 – ring gear; 5 – separator; 6 – ball bearing

Анализ качества зацепления

Рассмотрим контактирующие звенья на примере циклоидальной передачи с ПТК и свободной обоймой с точки зрения точности их изготовления. Здесь под точностью изготовления следует понимать степень приближения действительных размеров к теоретическим [18]. Точность деталей по геометрическим параметрам определяется совокупностью нескольких параметров, однако для нас представляет интерес точность получаемых размеров поверхностей деталей передачи, непосредственно участвующих в зацеплении.

Анализируя точность изготовления деталей передачи с ПТК и свободной обоймой, необходимо понимать, что погрешности размеров при изготовлении не только неизбежны, но и допустимы в некоторых пределах, при которых детали способны удовлетворить требованиям сборки и работоспособности передачи.

Под погрешностью размеров деталей одного типоразмера понимают такую характеристику как допуск. Так годные детали должны иметь размеры в границах, образуемых предельными отклонениями допуска на соответствующий размер.

Допуск является мерой точности. Чем меньше допуск, тем выше требуемая точность и трудоемкость изготовления детали, но тем меньше допускается колебание действительных размеров деталей и, следовательно, колебание зазоров и натягов в зацепление. Таким образом, допуск размера непосредственно влияет на трудоемкость изготовления и себестоимость деталей [18], обеспечивающих работоспособность механизма. Рассмотрим схему зацепления передачи с ПТКСО (рис. 2). Здесь наглядно продемонстрировано относительное положение допусков на размеры деталей передачи с ПТКСО.

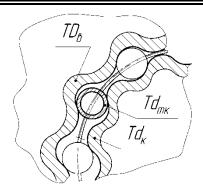
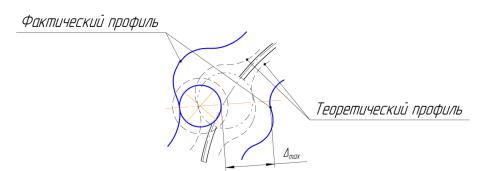


Рис. 2. Схема расположения допусков на контактирующие поверхности в зацепление передачи с ПТКСО

Fig. 2. Diagram of mate surface tolerance arrangement in the transmission linkage with intermediate rolling bodies and a free bracket

В данной работе исследуется существующая передача с ПТК и свободной обоймой, состоящая из деталей, выполненных в допусках по основным отклонениям системы вала (рис. 2) [18]. Согласно этой системы, допуски диаметральных размеров венца ($TD_{\rm B}$) принимают положительные значения как у отверстия, а у тела качения ($Td_{\rm TK}$) и кулачка ($Td_{\rm K}$) — отрицательные, как у валов.

Согласно существующей технологи-


ческой и конструкторской документации, контактирующие поверхности венца (циклоидальная) выполнена по 7 квалитету с допуском по Н, тела качения (цилиндрическая) – по h6, а кулачка (циклоидальная) – по h7. В дальнейшем предлагается применять обозначение точности контактирующих деталей (звеньев) передачи, согласно точности звеньев, расположенных в последовательности: венец-тело качения-кулачек, – H7-h6-h7 (как было указано выше).

Определение максимального зазора в зацеплении

Опираясь на выше представленную схему (рис. 2), определение максимального зазора (Δ_{max}) схематично можно представить, как показано на рис. 3.

На рис. З изображен один из вариантов предельного расположения звеньев, соответствующий выполнению размера профиля венца по максимальному допуску, а размеров профилей тела качения и кулачка

по минимальному допуску. Т.е. действительные размеры контактирующих деталей достигли крайних предельных значений (допуска), что создает в зацеплении передачи с ПТКСО максимальный технологический зазор Δ_{max} . При этом тело качения может занять либо крайнее верхнее положение (рис. 3), либо крайнее нижние.

Puc. 3. Схема определения максимального зазора в зацеплении передачи с ПТКСО Fig. 3. Diagram for limit clearance determination in the transmission linkage with intermediate rolling bodies and a free bracket

Рассмотрим определение максимального технологического зазора Δ_{max} для зацепления в передачи с ПТКСО.

Опираясь на схему (рис. 3) максимальный технологический зазор на сторону, по основным отклонениям Н-h, определим по формуле:

$$\Delta_{max} = \frac{TD^{\mathrm{B}}}{2} - Td^{\mathrm{TK}} - \frac{Td^{\mathrm{K}}}{2}, \qquad (1)$$

где $TD^{\rm B}$ – допуск отклонения диаметрального размера венца;

 $Td^{\scriptscriptstyle \mathrm{TK}}$ – допуск отклонения диаметрального размера тела качения; Td^{κ} – допуск отклонения диаметрального размера кулачка.

На ряду с определением максимального зазора, так же необходимым становится определение и предельных зазоров по верхнему значению (Δ_{uv}^{lim}) допуска для всех размеров контактирующих звеньев и по нижнему значению Δ_d^{lim} их допусков. Тогда для Δ_{up}^{lim}

$$\Delta_{up}^{lim} = \frac{ES^{B}}{2} - eS^{TK} - \frac{eS^{K}}{2}$$
 (2)

для Δ_d^{lim}

$$\Delta_d^{lim} = \frac{EI^B}{2} - ei^{TK} - \frac{ei^K}{2}, \tag{3}$$

где ES, es – верхнее отклонение для отверстия и вала соответственно; EI, ei — нижнее отклонение для отверстия и вала соответственно.

Индексом "в" обозначены отклонения для венца, "тк" - для тела качения, а "к" для кулачка.

В формулу (1) значение допуска подставляется со знаком, соответствующим области его расположения относительно нулевой линии. Например, если рассматривается отверстие с допуском по Н, то допуск в формулу (1) подставляется со знаком "+", а для вала по тому же квалитету – со знаком "-". В формулах (2) и (3) отклонения подставляются со своими знаками. Выражения (1)-(3) применимы для любых посадок, исключением являются посадки **J** и **Js**, т.к. их отклонения располагаются по обе стороны от нулевой линии. При использовании этих посадок в формулу (1) следует подставлять верхнее отклонение для отверстия и нижнее отклонение для вала.

Для случая, когда размеры выполняются по посадке H(h), выражения (2) и (3) принимают вид:

$$\Delta_{up}^{lim} = \frac{ES^{B}}{2} - 0 - \frac{0}{2} \tag{4}$$

$$\Delta_d^{lim} = 0 - ei^{\text{TK}} - \frac{ei^{\text{K}}}{2}$$
 (5)

Пример расчета и анализ результатов

Для примера рассмотрим зацепление передачи с ПТК и свободной обоймой. со следующими размерами контактирующих деталей:

$$D_{
m впадин}^{
m B}=69,2H7^{(+0.03)}$$
 мм.; $Td^{
m TK}=5h6_{(-0.008)}$ мм.; $d_{
m впадин}^{
m K}=56h7_{(-0.03)}$ мм.

Здесь допуск на каждую деталь равен соответственно:

$$TD^{\rm B} = +0.03~{
m MM}$$
 ; $Td^{
m TK} = -0.008~{
m MM}$; $Td^{
m K} = -0.03~{
m MM}$.

Произведем расчет максимального технологического зазора (Δ_{max}), используя выражения (1), для предельных зазоров по отклонениям посадок H7-h6-h7, применяемых на производстве, получим:

$$\Delta_{1\text{max}}^{\text{H7-h6-h7}} = 0.038 \text{ мм.}$$

Рассмотрим изменение максимально технологического зазора при изменении квалитета деталей на единицу, расчет произведем аналогично предыдущему случаю:

$$\begin{array}{c} \Delta_{2max}^{H8-h7-h8} \ = \! 0.058 \ \text{mm}; \ \Delta_{3max}^{H9-h8-h9} \ = \! 0.092 \ \text{mm}; \\ \Delta_{4max}^{H10-h9-h10} \ = \! 0.15 \ \text{mm}. \end{array}$$

Представим полученные результаты в виде гистограммы (рис. 4).

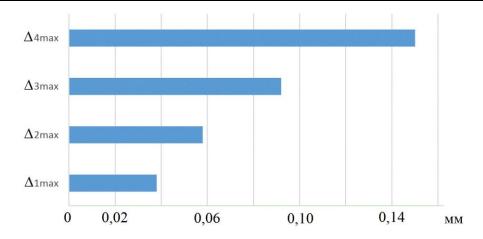


Рис. 4. Гистограммы изменения максимального технологического зазора, в зависимости от загрубления квалитетов поверхностей деталей

Fig. 4. Histograms of limit manufacturing clearance variation depending on the desensitization of part surface accuracy grade

Из гистограммы (рис. 4), видно, что при уменьшении точности происходит рост максимального технологического зазора, что является нежелательным фактором для работоспособности передачи. Однако в реальных производственных условиях получение максимального технологического зазора маловероятно. Наиболее вероятно получение размеров посередине полей допусков, либо по предельным отклонениям, в последнем случае получаем предельные зазоры Δ_{up}^{lim} и Δ_{d}^{lim} .

Для рассмотренного выше случая сочетания посадок и квалитетов контактирующих деталей **H7-h6-h7** предельные зазоры получим по формулам (4), (5):

$$\Delta_{uv}^{lim} = 0.015$$
 mm,

$$\Delta_d^{lim} = 0.023$$
 mm.

Для сравнения рассмотрим случай изготовления контактирующих деталей передачи с ПТКСО по более грубым квалитетам и измененной посадке для кулачка, например:

$$D_{\text{впадин}}^{\text{в}} = 69,2H8^{(+0.046)} \text{ мм;}$$

$$Td^{\text{TK}} = 5h8_{(-0.018)} \text{ MM};$$

$$d_{\text{впадин}}^{\kappa} = 56k7_{+0,002}^{+0,032} \text{ мм.}$$

Здесь допуск на каждую деталь равен соответственно:

$$TD^{\rm B} = +0.046$$
 mm.

$$Td^{\text{TK}} = -0.018 \text{ MM}.$$

$$Td^{K} = +0.03 \text{ MM}.$$

Используя выражения (1)—(3) рассчитаем максимальный технологический и предельные зазоры по отклонениям посадок **H8-h8-k7**:

$$\Delta_{max}^{H8-h8-k7} = 0.026 \text{ MM}.$$

$$\Delta_{up}^{lim}=0.007$$
 mm.

$$\Delta_{\mathrm{d}}^{\mathit{lim}} = 0.017$$
 mm.

Сравнивая полученные значения зазоров по рассмотренным сочетаниям посадок (H7-h6-h7 и H8-h8-k7) видно, что при применении более грубых значений квалитета технологические зазоры уменьшились, как максимальный, так и предельные. Так возможно изготавливать детали передачи с ПТКСО с меньшей точностью и при этом обеспечивать достаточно высокую точность самого зацепления. А снижение точности изготовления деталей упрощает технологию и снижает себестоимость изделий.

Заключение

Выполнен анализ случаев возникновения технологических зазоров в зацеплении передачи с ПТКСО, рассмотрены случаи возникновения технологических зазоров при разных сочетаниях квалитетов и посадок контактирующих поверхностей в рассматриваемой передаче. Показано, что при изготовлении размеров деталей передачи с

меньшей точностью (**H8-h8-k7**) возможно получение меньших значений зазоров в зацеплении ($\Delta_{up}^{lim}=0.007~{\rm MM},~\Delta_{\rm d}^{lim}=0.017~{\rm MM}$), а следовательно, увеличение точности передачи с ПТКСО. Полученные данные могут быть использованы для всего класса передач с ПТК.

Библиографический список

- 1. Lustenkov M.E. Strength calculations for cylindrical transmissions with compound intermediate rolling elements // Int. J. of Mechanisms and Robotic Systems. 2015. Vol. 2. No. 2. P. 111–121.
- 2. Yunhong Meng, Changlin Wu, Liping Ling Mathematical modeling of the transmission performance of 2K–H pin cycloid planetary mechanism // Mechanism and Machine Theory. 2007. Vol. 42. P. 776–490.
- 3. Bingkui Chen, Hui Zhong, Jingya Liu, Chaoyang Li, Tingting Fang Generation and investigation of a new cycloid drive with double contact // Mechanism and Machine Theory. 2012. Vol. 49. P. 270–283.
- 4. Junhua Bao, Weidong He Parametric Design and Efficiency Analysis of the Output-PinWheel Cycloid Transmission // International Journal of Control and Automation. 2015. Vol. 8. No. 8. P. 349–362.
- 5. Панкратов Э.Н. Проектирование механических систем автоматизированных комплексов для механообрабатывающего производства: практикум лидерапроектировщика. Томск: Изд-во Томского университета, 1998. 296 с.
- 6. Компания «SIMACO» [Электронный ресурс]: URL: http://www. http://smc.tomsk.ru/ (15.01.2015).
- 7. Lustenkov M.E. Strength calculations for cylindrical transmissions with compound intermediate rolling elements // Int. J. of Mechanisms and Robotic Systems. 2015. Vol. 2. No. 2. P. 111–121.
- 8. Лустенков М.Е., Сазонов И.С. Оценка ресурса и нагрузочной способности передач с составными промежуточными элементами // Актуальные вопросы машиноведения: сб. науч. тр. 2014. Вып. 3. С. 189–191.
- 9. Лустенков М.Е. Критерии прочности механических передач с составными промежуточными элементами качения // Вестник Белорусско-Российского университета. 2015. Т. 49. № 4. С. 33–41.
- 10. CHEN Bing Kui, FANG TingTing, LI ChaoYang,

- WANG ShuYan Gear geometry of cycloid drives // Sci China Ser E-Tech Sci. 2008. Vol. 51. No. 5. P. 598–610. 11. Mihailidis A., Athanasopoulos E., Agouridas K. EHL film thickness and load dependent power loss of cycloid reducers // Mechanical Engineering Science. 2016. Vol. 230. Issue 7–8. P. 1303–1317. DOI: 10.1177/0954406215612815
- 12. Покатилов Д.А., Ефременков Е.А. Анализ технологического процесса изготовления циклоидального профиля деталей передачи с промежуточными телами качения // Известия Самарского научного центра РАН. 2015. Т. 17. № 2 (4). С. 868–873.
- 13. Efremenkov E.A., An I-Kan Euler–Savari Determination of Radii of Curvature of Cycloid Profiles // Russian Engineering Research. 2010. Vol. 30. No. 10. P. 1001–1004.
- 14. An I-Kan, Il'in A.S., Lazurkevich A.V. Aspects of geometric calculation of the planetary gear train with intermediate rollers. Part 1 // IOP Conf. Series: Materials Science and Engineering. 2016. Vol. 124. 012003, 5 p. DOI:10.1088/1757-899X/124/1/012003
- 15. An I-Kan, Il'in A.S., Lazurkevich A.V. Load analysis of the planetary gear train with intermediate rollers. Part 2 // IOP Conf. Series: Materials Science and Engineering. 2016. Vol. 124, 012004, 6 p. DOI: 10.1088/1757-899X/124/1/012004.
- 16. Efremenkov E.A., Kobza E.E., Efremenkova S.K. Force Analysis of Double Pitch Point Cycloid Drive with Intermediate Rolling Elements and Free Retainer // Applied Mechanics and Materials: Scientific Journal. 2015. Vol. 756. P. 29–34.
- 17. Ефременков Е.А. Разработка и проектирование передач с промежуточными телами качения нового вида // Известия ТПУ 2005. Т. 308. № 1. С. 131–135. 18. Допуски и посадки: Справочник / В.Д. Мягков. В 2-

х ч. 6-е изд., перераб. и доп. Л.: Машиностроение.

1982. 4. 1. 543 c.

References

- 1. Lustenkov M.E. Strength calculations for cylindrical transmissions with compound intermediate rolling elements. Int. J. of Mechanisms and Robotic Systems, 2015, vol. 2, no. 2, pp. 111–121.
- 2. Yunhong Meng, Changlin Wu, Liping Ling Mathematical modeling of the transmission performance of 2K–H pin cycloid planetary mechanism. Mechanism and Machine Theory, 2007, vol. 42, pp. 776–490.
- 3. Bingkui Chen, Hui Zhong, Jingya Liu, Chaoyang Li,

- Tingting Fang Generation and investigation of a new cycloid drive with double contact. Mechanism and Machine Theory, 2012, vol. 49, pp. 270–283.
- 4. Junhua Bao, Weidong He Parametric Design and Efficiency Analysis of the Output-PinWheel Cycloid Transmission. International Journal of Control and Automation, 2015, vol. 8, no. 8, pp. 349–362.
- 5. Pankratov E.N. Proyektirovaniye mekhanicheskih system avtomatizirovannjh kompleksov dlya mehanoobrabativaushchego proizvodstva: Praktikum lideraproektirovshchika [Designing mechanical systems of automated complexes for machining production: Leading designer's practical course]. Tomsk: Tomsk State University Publ., 1998, 296 p. (in Russian).
- 6. Kompanija SIMACO [The SIMACO Company]. Available at: http://www. http://smc.tomsk.ru/ (accessed 15 January 2015).
- 7. Lustenkov M.E. Strength calculations for cylindrical transmissions with compound intermediate rolling elements. Int. J. of Mechanisms and Robotic Systems, 2015, vol. 2, no. 2, pp. 111–121.
- 8. Lustenkov M.E. Estimation of the resource and load capacity of transmission with compound intermediate elements. *Aktual'nie problemi mashinovedenija: sbornik nauchnih trudov* [Relevant Issues of Mechanical Engineering: collection of scientific works], 2014, vol. 3, pp. 189–191. (in Russian).
- 9. Lustenkov M.E. Strength criteria of mechanical transmissions with compound intermediate rolling elements. *Vestnik Belorussko-Rossijskogo universiteta* [Bulletin of the Belarusian-Russian University], 2015, vol. 49, no. 4, pp. 33–41. (In Russian).
- 10. CHEN Bing Kui, FANG TingTing, LI ChaoYang, WANG Shu Yan Gear geometry of cycloid drives. Sci China Ser E-Tech Sci, 2008, vol. 51, no. 5, pp. 598–610. 11. Mihailidis A., Athanasopoulos E., Agouridas K. EHL film thickness and load dependent power loss of cycloid

Критерии авторства

Ефременков Е.А., Ефременкова С.К. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

- reducers. Mechanical Engineering Science. 2016, vol. 230, issue 7–8, pp. 1303–1317. DOI: 10.1177/0954406215612815
- 12. Pokatilov D.A., Efremenkov E.A. The analysis of technological process production of cycloidal profile of transfer details with intermediate rolling elements. *Izvestiya Samarskogo nauchnogo centra RAN* [Izvestia of Samara Scientific Center of the Russian Acdemy of Sciences], 2015, vol. 17, no. 2 (4), pp. 868–873. (in Russian).
- 13. Efremenkov E.A., An I-Kan Euler–Savari Determination of Radii of Curvature of Cycloid Profiles // Russian Engineering Research. 2010, vol. 30, no. 10, pp. 1001–1004.
- 14. An I-Kan, Il'in A.S., Lazurkevich A.V. Aspects of geometric calculation of the planetary gear train with intermediate rollers. Part 1 // IOP Conf. Series: Materials Science and Engineering. 2016, vol. 124, 012003, 5 p. DOI:10.1088/1757-899X/124/1/012003
- 15. An I-Kan, Il'in A.S., Lazurkevich A.V. Load analysis of the planetary gear train with intermediate rollers. Part 2 // IOP Conf. Series: Materials Science and Engineering. 2016, vol. 124, 012004, 6 p. DOI: 10.1088/1757-899X/124/1/012004
- 16. Efremenkov E.A., Kobza E.E., Efremenkova S.K. Force Analysis of Double Pitch Point Cycloid Drive with Intermediate Rolling Elements and Free Retainer. Applied Mechanics and Materials: Scientific Journal. 2015, vol. 756, pp. 29–34.
- 17. Efremenkov E.A. Development and design of a new type of transmission with intermediate rolling bodies. *Izvestiya TPU* [Bulletin of the Tomsk Polytechnic University], 2005, vol. 308, no. 1, pp. 131–135. (In Russian). 18. Miagkov V.D. *Dopuski I posadki* [Tolerances and
- 18. Miagkov V.D. *Dopuski I posadki* [Tolerances and Fits]. Leningrad: Mechanical Engineering Publ., 1982, vol. 1, 543 p. (in Russian).

Authorship criteria

Efremenkov E.A., Efremenkova S.K. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Оригинальная статья / Original article УДК 621.941.08

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-34-45

ИССЛЕДОВАНИЕ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ В ПОВЕРХНОСТНОМ СЛОЕ ДЕТАЛЕЙ ИЗ СТАЛИ 13X15H4AM3 ПРИ ПРОДОЛЬНОМ ТОЧЕНИИ

© А.Г. Тихонов¹, П.С. Смольков²

Иркутский национальный исследовательский технический университет, 664074, Российская Федерация, г. Иркутск, ул. Лермонтова, 83.

РЕЗЮМЕ. ЦЕЛЬ. Проведение сравнительного анализа результатов измерения остаточных напряжений в стали 13Х15Н4АМ3 (ВНС-5) после продольного точения с варьированием подачи. В работе были поставлены следующие задачи: установить влияние режимов обработки при продольном точении на технологические остаточные напряжения, формируемые в образце, и провести сравнение принципиально различных методов для исследования напряженно-деформированного состояния материала на поверхности детали. МЕТОДЫ. В ходе работы были применены механический метод определения остаточных напряжений и метод рентгеноструктурного анализа. Данные методы являются наиболее распространенными при анализе остаточных напряжений в металлических образцах, отличаются удовлетворительной точностью, сходимостью результатов и широко применяются как в исследовательских целях, так и в производственных условиях. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Кратко описан процесс изготовления образцов, используемых при исследовании остаточных напряжений механическим методом на установке УДИОН-2. Получены эпюры распределения остаточных напряжений в поверхностном слое образцов после продольного точения с варьированием подачи. Проведено сравнение результатов измерений, полученных механическим методом и методом рентгеноструктурного анализа на поверхности образцов. Рассмотрены особенности методов, а также оборудование для исследования технологических остаточных напряжений – установка для измерения остаточных напряжений механическим методом (УДИОН-2) и рентгеновский дифрактометр XStress 3000 G3R. ВЫВОДЫ. При росте подачи увеличивается глубина залегания минимального остаточного напряжения, глубина залегания активной части эпюр остаточного напряжения, но при этом уменьшается значение касательного напряжения au_{zx0} на поверхности. Выявлена достаточно высокая сходимость результатов измерения остаточных напряжений на поверхности образцов механическим методом и при помощи рентгеноструктурного анализа. Ключевые слова: остаточные напряжения, продольное точение, высокопрочная нержавеющая сталь, рентгеноструктурный анализ, механический метод определения остаточных напряжений, поверхностный слой.

Информация о статье. Дата поступления 19 мая 2018 г.; дата принятия к печати 27 июля 2018 г.; дата онлайн-

Формат цитирования. Тихонов А.Г., Смольков П.С. Исследование остаточных напряжений в поверхностном слое деталей из стали 13X15H4AM3 при продольном точении // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 34–45. DOI: 10.21285/1814-3520-2018-8-34-45

RESEARCH OF RESIDUAL STRESSES IN THE SURFACE LAYER OF PARTS FROM STEEL 13X15H4AM3 AT LONGITUDINAL TURNING

A.G. Tikhonov, P.S. Smolkov

размещения 31 августа 2018 г.

Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russian Federation

ABSTRACT. The **PURPOSE** of the paper is to perform a comparative analysis of the measurement results of residual stresses in steel 13X15H4AM3 (VNS-5) after longitudinal turning with a varied feed. The work has the following objectives:

¹Тихонов Александр Геннадьевич, младший научный сотрудник кафедры технологии и оборудования машиностроительных производств, e-mail: tihonovalex90@mail.ru

Alexander G. Tikhonov, Junior Researcher of the Department of Technology and Equipment of Machinery Production, e-mail: tihonovalex90@mail.ru

²Смольков Павел Сергеевич, инженер кафедры технологии и оборудования машиностроительных производств, e-mail: sps@istu.ru

Pavel S. Smolkov, Engineer of the Department of Technology and Equipment of Machinery Production, e-mail: sps@istu.ru

0

Машиностроение и машиноведение Mechanical Engineering and Machine Science

to determine the influence of processing modes at longitudinal turning on technological residual stresses formed in a sample and to compare the methods different in principle for the study of the stress-strain state of material on the part surface. **METHODS**. The study uses a mechanical method for determining residual stresses and an X-ray diffraction analysis (XRD). Being the most widespread in the analysis of residual stresses in metal samples, these methods feature satisfactory accuracy, convergence of results and are widely applied both for research and production purposes. **RESULTS AND THEIR DISCUSSION**. A brief description is given to the production process of samples used for residual stress research by the mechanical method using UDION-2 research equipment. The diagrams of residual stress distribution in the surface layer of samples after longitudinal turning with a varied feed are obtained. The measurement results received through the use of the mechanical method and XRD analysis on sample surface are compared. Consideration is given to the features of methods and equipment for the study of technological residual stresses, which includes the UDION-2 research equipment for residual stress measurement by the mechanical method and the XRD XStress 3000 G3R diffractometer. **CONCLUSIONS**. The growth of the feed is accompanied by the increase in the depth of the minimum residual stresses, the depth of the active area of residual stress diagrams and the decrease in the value of the tangential stress τ_{zx0} on the surface. A sufficiently high convergence of the measurement results of residual stresses on the sample surface by the mechanical method and X-ray diffraction analysis is found.

Keywords: residual stresses, longitudinal turning, high strength stainless steel, X-ray diffraction analysis (XRD-analysis), mechanical method for residual stress determination, surface layer.

Information about the article. Received May 19, 2018; accepted for publication July 27, 2018; available online August 31, 2018.

For citation. Tikhonov A.G., Smolkov P.S. Research of residual stresses in the surface layer of parts from steel 13X15H4AM3 at longitudinal turning. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 34–45. DOI: 10.21285/1814-3520-2018-8-34-45. (In Russian).

Введение

В технологии обработки поверхности важная роль отводится процессам с жесткой кинематикой, многие из которых проводятся по базовой схеме продольного точения: создается зона местной упругопластической деформации, которая перемещается с помощью главного движения и подачи для обработки всей поверхности детали [1–9].

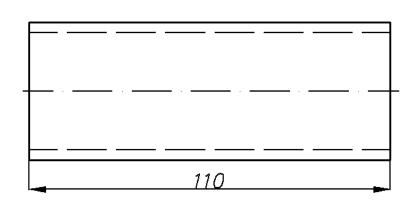
Качество поверхностного слоя обрабатываемого материала во многом зависит как от используемого режущего инструмента, так и от режимов обработки детали, при этом исследование таких физических параметров состояния поверхности как «остаточные напряжения» и «наклеп» зачастую не проводится, однако именно эти характеристики содержат информацию о величине и направлении пластической деформации при обработке [10-12]. Вместе с определением остаточных напряжений возникает проблема управления ими по критерию обеспечения требуемого качества поверхностного слоя, что требует проведения комплексных исследований с варьированием режимов обработки, режущего инструмента и использованием различных методов измерений остаточных напряжений для верификации полученных результатов [13, 14].

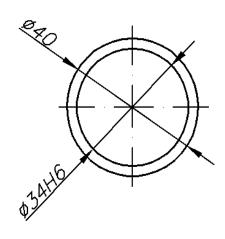
Определение остаточных напряжений (ОН) является неотъемлемой частью в исследовании напряженно-деформированного состояния материалов, подвергающихся различным видам технологического воздействия. В Иркутском национальном исследовательском техническом университете (ИРНИТУ) продолжительное время ведутся исследования по изучению ОН [15, 16].

Оценка остаточных напряжений проводится по компонентам тензора напряженно-деформированного состояния, что при допущении о плоском состоянии остаточных напряжений в процессе продольного точения позволяет рассматривать две нормальные компоненты σ_x , σ_z по направлениям векторов подачи (осевая) и скорости резания (окружная), соответственно, и одну касательную компоненту τ_{zx} в плоскости обработки [2, 3, 5]. Многие исследователи упрощают данную схему измерений до определения одной, в лучшем случае – двух нормальных компонент [4], это, безусловно, искажает полученные результаты и приводит к выбору неоптимальных режимов обработки. Принципиально важным фактором является обеспечение сходимости результатов при использовании различных мето-

дов и подходов, что особенно важно в условиях отсутствия эталонного образца остаточных напряжений и недостаточной проработки действующей нормативной базы. Поэтому целью настоящих исследований является установление влияния режимов обработки при продольном точении стали

13Х15Н4АМЗ на технологические остаточные напряжения, формируемые в образце, а также сравнительный анализ механического метода и метода рентгеноструктурного анализа (РСА) для исследования напряженно-деформированного состояния материала на поверхности деталей.


Экспериментальное определение остаточных напряжений


Для исследования распределения компонент ОН, наводимых при продольном точении, были изготовлены образцы-втулки из высокопрочной нержавеющей стали 13X15H4AM3 (BHC-5) (рис. 1 *a*). Химический состав данной стали приведен в табл. 1, механические и физические свойства — в табл. 2.

Изначально заготовки для образцоввтулок имели следующие размеры: наружный диаметр — 40 мм, внутренний диаметр — 34 мм, длина — 110 мм. Внутренний диаметр втулок является базирующим и был обработан окончательно с допуском по H6(рис. 1 b).

а

Puc. 1. Исходные образцы-втулки: а – фото; b – чертеж Fig. 1. Initial plug samples: a – image; b – drawing

b

Таблица 1

Химический состав стали 13Х15Н4АМ3

Table 1

Chemical composition of steel 13X15H4AM3

Массовая доля элементов, %								
С	Cr	Ni	Мо	N	Si	Mn	S	Р
0.11-0.16	14.0-15.5	4.0-5.0	2.3-2.8	0.05-0.10	≤0.7	1.0	0.02	0.03

Таблица 2

Механические и физические свойства стали 13Х15Н4АМ3

Table 2

Mechanical and physical properties of steel 13X15H4AM3

σ₀, МПа	<i>σ</i> _{0,2} ,МПа	δ, %	ψ, %	<i>E</i> , МПа	$ ho$, кг/м 3
1380–1600	≥920	≥15	≥55	190000	7820

Обработка выполнялась на токарном обрабатывающем центре DMG NEF400: заготовки для образцов-втулок закреплялись гайкой на центровой оправке, которая, в свою очередь, была зажата в трехкулачковый патрон токарного обрабатывающего центра (рис. 2). Экспериментальный проход

при точении производился с варьированием подачи, скорость и глубина резания не изменялись. В табл. 3 представлены режимы резания, а также применяемые державки и пластины для резцов производства Sandvik Coromant.


Таблица 3

Режимы резания и применяемый инструмент

Table 3

Cutting modes and used tools

Инструмент	<i>V_c,</i> м/мин	<i>F</i> _n , мм/об	A_p , MM	
Порукорко: C2 DCI NII, 22045 42		0.1		
Державка: C3-DCLNL-22045-12 Пластина: CNMG 12 04 08-MM 2025	100	0.3	0.5	
TIJIACTIMA. CINIVIG 12 04 06-IVIIVI 2025		0.5		

Puc. 2. Закрепление образцов-втулок в токарном обрабатывающем центре DMG NEF400 Fig. 2. Fixing of plug samples in the turning processing center DMG NEF400

Измерение ОН производилось двумя методами – механическим методом (применительно к цилиндрическим деталям метод известен также как метод колец и полосок) и методом рентгеноструктурного анализа.

Элементарные образцы для определения ОН механическим методом (полоски и кольца) получали вырезкой из образцоввтулок (рис. 3).

Для реализации механического метода использовалась установка УДИОН-2 [7] разработки федерального государственного бюджетного образовательного учреждения высшего профессионального образования (ФГБОУ ВО) ИРНИТУ (рис. 4). Установка является восьмиканальной, что позволяет одновременно измерять до четырех различных элементарных образцов с регистрацией их изгиба и кручения. В состав основного оборудования установки входит тензометрическая система сбора данных 9, приспособления для закрепления образцов 2, устройство подъема ванн (подъемный механизм) 7, термостатирующая 6 и травильная ванна 5, вытяжной шкаф 4, скруббер (система очистки воздуха) 1, блок питания электрохимической цепи 10. В состав вспомогательного оборудования, предназначенного для проведения промежуточных измерений параметров образца, входят аналитические весы, приспособление для измерения стрелы прогиба, микрометр, набор концевых плоскопараллельных мер длины.

Непрерывное удаление слоев осуществляется посредством химического травления элементарных образцов в растворе электролита, находящегося в травильной ванне 5, постоянство и стабильность процесса травления обеспечивает термостат, состоящий из термостатирую-

щей ванны 6 со встроенными в нее нагревателями, управляемыми пропорционально-интегрально-дифференцирующим (ПИД) регулятором, роль термостатирующей жидкости выполняет вода.

Для расчета ОН и учета начальных напряжений после изготовления элементарных образцов у них измеряются перемещения в результате вырезки полосок, вырезки и разрезки колец из исходных образцов-втулок. Этими перемещениями являются прогибы f^0 (F^0) и углы закручивания ψ^0 полосок, а также изменения диаметров δ^0 и осевые перемещения ω^0 поверхностей разрезки колец (рис. 5).

В процессе химического травления элементарных образцов происходит высвобождение остаточных напряжений, что приводит к деформации изгиба (кручения) исследуемого образца, которая, в свою очередь, через двуплечий рычаг передается на тензометрический датчик. Тензометрические датчики являются унифицированными и состоят из гибкой стальной пластины с наклеенными с двух сторон тензорезисторами.

Система сбора данных установки УДИОН-2 обеспечивает прием, обработку, визуализацию и сохранение информации с тензометрических датчиков в процессе проведения эксперимента.

Обработанная информация, полученная с тензометрических датчиков, а также измеренные параметры образцов, необходимые для последующего расчета остаточных напряжений, хранятся в специальной базе данных. Каждому элементарному образцу присваивается уникальный штрих-код, с помощью которого в базу данных образцов вносятся все его необходимые параметры.

Рис. 3. Элементарные образцы (кольца и полоски) для определения остаточного напряжения механическим методом

Fig. 3. Elementary samples (rings and strips) for determining residual stresses by the mechanical method

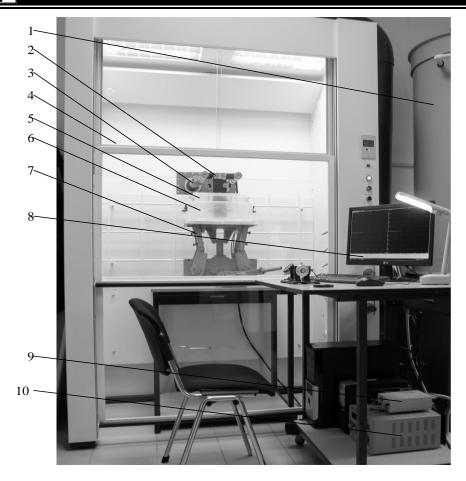


Рис. 4. Исследовательский комплекс УДИОН-2 для измерения остаточных напряжений механическим методом: 1 — скруббер; 2 — приспособление для закрепления образцов; 3 — кронштейны для приспособлений; 4 — вытяжной шкаф; 5 — травильная ванна; 6 — термостатирующая ванна; 7 — устройство подъема ванн; 8 — персональный компьютер; 9 — тензометрические модули системы сбора данных; 10 — блок питания

Fig. 4. Research equipment UDION-2 for residual stress measuring by the mechanical method: 1 – scrubber; 2 – device for sample fixing; 3 – consoles for devices; 4 – fume hood; 5 – pickling bath; 6 – thermostatic bath; 7 – bath lifting device; 8 – personal computer; 9 – strain gauge modules of the data collection system; 10 – power supply

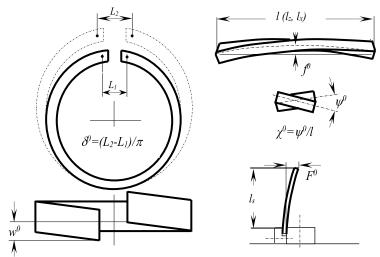
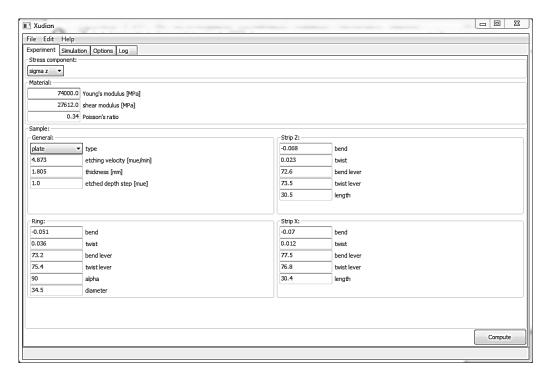


Рис. 5. Перемещения, измеряемые на элементарных образцах (кольцах и полосках) после их вырезки

Fig. 5. Displacements measured on elementary samples (rings and strips) after cutting them



Последующая обработка информации производится в программе для расчета остаточных напряжений, разработанной в ФГБОУ ВО «ИРНИТУ» специально для установки УДИОН-2 (рис. 6). Программа рассчитывает нормальные и касательные компоненты остаточных напряжений по известным формулам [8].

Завершающим этапом работ по измерению остаточных напряжений в образце является формирование протокола измерения, содержащего параметры образца и эпюры остаточных напряжений, построенные по данным, рассчитанным в программе.

Измерение остаточных напряжений методом рентгеноструктурного анализа осуществлялось на дифрактометре XStress 3000 G3R непосредственно на поверхности образцов-втулок. Рентгеновский анализатор напряжений «XStress 3000 G3/G3R» (рис. 7) фирмы «Stresstech Oy» представляет собой портативный рентгеновский дифрактометр, разработанный специально для измерения остаточных напряжений. В малогабаритная приборе используется рентгеновская трубка. В рентгеновском анализаторе напряжений «XStress G3/G3R» реализованы оба типа Ψ - и Ω - гониометрии, являющиеся стандартными при определении остаточных напряжений методом рентгеновской дифракции. Метод измерения напряжений с использованием Ψ -гониометра является более точным и производительным, а использование Ω -гониометра иногда позволяет проводить измерения напряжений, где использование Ψ -гониометра не является возможным, например исследовать напряжения в пазах или зубах шестерен.

В состав рентгеновского дифрактометра XStress 3000 G3R входят: гониометр G3R с боковым наклоном – модифицированной psi (Ψ) геометрией; главный блок X3003; компьютер, настольный или портативный, с операционной системой Windows (Windows 2000 pro Windows XP pro, Windows Vista Business или рекомендуемая – новейшая) и портом для локальной сети Ethernet для запуска программного обеспечения; граммное обеспечение Х3000 на Windows для считывания показаний линейных датчиков изображения, обработки данных и обеспечения функций предохранительной блокировки, управления, измерения, расчетов, отображения, распечатки и хранения.

Puc. 6. Интерфейс программы расчета остаточных напряжений для установки УДИОН-2 Fig. 6. Interface of the residual stress calculation program for UDION-2 installation

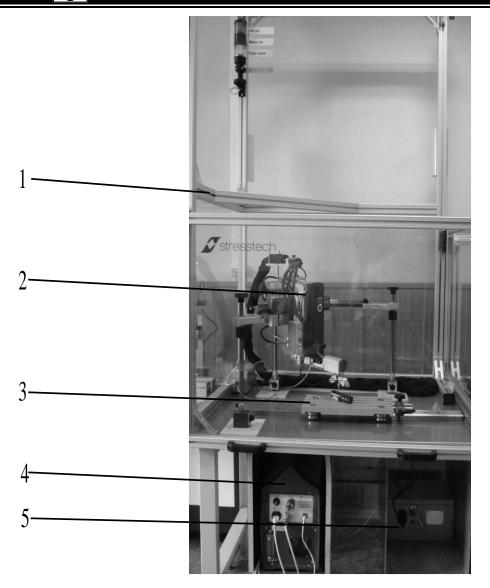
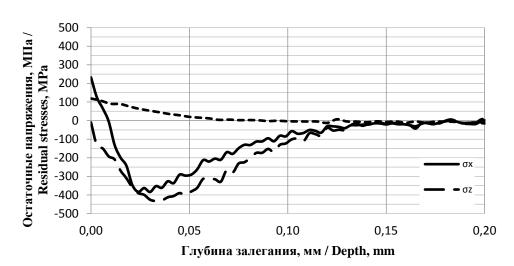



Рис. 7. Исследовательский комплекс для измерения ОН методом РСА: 1 – защитный шкаф с системой сигнализации и автоматическим отключением; 2 – гониометр рентгеновского анализатора напряжений XStress 3000 G3/G3R; 3 – стол с подвижной платформой для закрепления и перемещения образцов; 4 – блок управления X3003; 5 – усилитель вращения двигателей G3R Fig. 7. Research equipment for residual stress measuring by the XRD method: 1 – protection cabinet with an alarm system and automatic shutdown; 2 -goniometer of X-ray residual stresses analyzer XStress 3000 G3/G3R; 3 - table with a movable platform for fixing and moving of samples; 4 - control unit X3003; 5 - rotation amplifier of G3R engines


Прибор автономен, для его работы необходимо лишь внешнее электропитание. На подготовку прибора к работе с момента доставки прибора на место измерения требуется всего десять минут. Использование встроенных микропроцессоров и связь между основным блоком, гониометром и компьютером по одному кабелю обеспечивают возможность быстрой установки. Благодаря применению технологии полупроводниковых детекторов, измерение на типовом стальном образце выполняется за две минуты и менее. Программное обеспечение предоставляет доступ ко всем настройкам и результатам измерения на любой стадии процесса измерения. В рентгеновском анализаторе напряжений используются твердотельные линейные датчики, способные преобразовывать рентгеновское излучение в электрический сигнал.

Блок управления Х3003 помещен в отдельный компактный, портативный корпус.

41

а

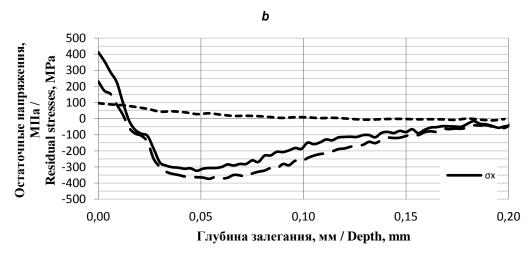


Рис. 8. Эпюры остаточных напряжений после продольного точения стали 13Х15Н4АМЗ, измеренные механическим методом: а - Fn = 0.1 мм/об;

С

 $b - F_n = 0.3 \text{ MM/o6}; c - F_n = 0.5 \text{ MM/o6}$

Fig. 8. Residual stress diagrams after longitudinal turning of steel 13X15H4AM3 measured by the mechanical method: $a - F_n = 0.1 \text{ mm/rev}$; $b - F_n = 0.3 \text{ mm/rev}$; $c - F_n = 0.5 \text{ mm/rev}$

Таблица 4

Параметры остаточных напряжений, полученные механическим методом и методом рентгеноструктурного анализа

Table 4
Parameters of residual stresses obtained by the mechanical method and XRD-analysis

	PCA / XRD- анализ		Механический метод						•	
<i>F_n</i> , мм/об	σ _{x0} , ΜΠα	σ _{z0} , ΜΠα	σ _{x0} , ΜΠα	σ _{z0} , ΜΠα	<i>т_{zx0},</i> МПа	σ _{х тіп} , МПа	σ _{z min} , ΜΠα	Δ _{x min} , MM	Δ _{z min} , MM	Δ, MM
0.1	253	215	287	200	157	-272	-308	0.028	0.028	0.075
0.3	214	-40	232	-10	118	-384	-433	0.030	0.033	0.125
0.5	369	212	412	230	96	-324	-374	0.048	0.054	0.175

 F_n – подача / feed; σ_{x0} , σ_{z0} , τ_{zx0} – OH на поверхности (при глубине 0 мм) соответствующей компоненты / residual stresses on the surface (at a depth 0 mm) of the appropriate component; $\sigma_{x~min}$, $\sigma_{z~min}$ – минимальное OH по глубине / minimum residual stress in the depth; $\Delta_{x~min}$, $\Delta_{z~min}$ – глубина залегания минимального OH / depth of the minimum residual stress; Δ – глубина залегания активной части эпюр OH / the depth of the active area of the residual stress diagrams

Главный блок оснащен системной интерфейсной платой, предохранительными блокировками, генератором высокого напряжения, блоком теплообменника, автономной системой охлаждения.

Измерение ОН в образцах методом РСА производилось со следующими параметрами рентгеносъемки: материал анода – хром, напряжение и сила тока на рентгеновской трубке — 25 кВ и 5,5 мА, соответственно, время экспозиции — 5 сек, угол дифракции — 156,4°, режим съемки — модифицированный χ [9, 14].

На рис. 8 приведены распределения компонент ОН после продольного точения стали 13X15H4AM3, измеренные механическим методом. Полученные данные позволяют утверждать, что на поверхности компоненты нормальных остаточных напряжений являются преимущественно растягивающими (см. табл. 4), а затем переходят в сжимаю-

щие и на глубине 25...55 мкм принимают минимальные значения (-270...-430 МПа). После прохождения минимумов нормальные компоненты остаточных напряжений практически совпадают.

Следует отметить экспоненциальный характер распределения касательной компоненты τ_{zx} остаточных напряжений, имеющей максимум на поверхности, изменение значения этого максимума можно связать с изменением подачи F_n , так как росту подачи с 0.1 до 0.5 мм/об соответствует уменьшение значения касательной компоненты со 150 до 100 МПа. Касательные напряжения в данном случае положительные, что подтверждается закручиванием элементарных образцов-колец в правую спираль после разрезки. Прослеживается влияние подачи на глубину залегания Δ активной части ОН: с увеличением подачи увеличивается и Δ (с 75 до 125 мкм).

Заключение

По результатам проведенного исследования установлено влияние подачи на распределение остаточных напряжений в функции глубины поверхностного слоя при продольном точении стали 13X15H4AM3:

при росте подачи увеличивается глубина залегания минимального остаточного напряжения, глубина залегания активной части эпюр ОН, но при этом уменьшается значение касательного напряжения *т*_{zx0} на поверхности.

При сравнении результатов определения нормальных компонент остаточных напряжений непосредственно на поверхности образцов методом рентгеноструктур-

ного анализа и механическим методом обнаружена достаточно высокая сходимость результатов измерений (среднее расхождение результатов составляет около 26 МПа, максимальное – 43 МПа).

Библиографический список

- 1. Zamashchikov Y.I. Equivalent Residual Stress Approach to the Surface Layer State / Int. J. Advances in Machining and Forming Operations, ISSN: 0975-4784. Vol. 1. No.1. January-June 2009. P. 21–35.
- 2. Биргер И.А. Остаточные напряжения. М.: Машиностроение, 1963. 232 с.
- 3. Иванов С.И. Определение остаточных напряжений в поверхностном слое цилиндра // Вопросы прочности элементов авиационных конструкций. 1971. № 48. С. 153–168.
- 4. Henriksen E.K., Ithaca, N.Y. 'Residual stresses in machined surfaces'. Trans. Of the ASME 434, 1951, vol. 73, no. 1, pp. 69–76.
- 5. Тимофеев В.Н. К вопросу о напряженном состоянии поверхностного слоя стали при точении // Журнал технической физики. 1954. Т. 24. № 7. С. 1273—1281.
- 6. Иванов С.И. К определению остаточных напряжений в цилиндре методом колец и полосок. Остаточные напряжения. Куйбышев: КуАИ, 1971. Вып. 53. С. 32–42.
- 7. Пат. № 2121666 МКИЗ, Российская Федерация, G01L1/06. Способ определения остаточных напряжений / Ю.И. Замащиков. № 96107536/28; заявл. 18.04.96, опубл. 10.11.98. Бюл. № 31.
- 8. Зайдес С.А. Технология экспериментальных исследований. В 2 кн. Иркутск: Изд-во Иркутского государственного технического университета, 2011. Кн. 2. С. 121–158.
- 9. Яблокова Н.А. Анализ напряженно-деформированного состояния лопаток ГТД рентгеноструктурным и механическим методами // Научно-технические ведомости Санкт-Петербургского государственного политехнического университета. 2011. № 117. С. 117–121.

- 10. García Navas V., Fernández D., Sandá A., Sanz C., Suzon S. De., Mendiola T.F. Surface integrity of AISI 4150 (50CrMo4) steel turned with different types of cooling-lubrication (2014) Procedia CIRP, 13. P. 97–102. DOI: 10.1016/j.procir.2014.04.017
- 11. Liu G., Huang C., Zou B., Wang X., Liu Z. Surface integrity and fatigue performance of 17-4PH stainless steel after cutting operations (2016). Surface and Coatings Technology, 307. P. 182–189. DOI: 10.1016/j.surfcoat.2016.08.086
- 12. Tekaslan, O., Gerger, N., Şeker, U. A study on residual stresses formed on AISI 304 austenitic stainless steels when machined with different cutting parameters [Article@Aisi 304 östenitik paslanmaz çeliklerin farkli kesme parametreleri ile tornalama işleminden sonra oluşan kalici gerilmelerin araştirilmasi]. Journal of the Faculty of Engineering and Architecture of Gazi University. 2009. No. 24 (3). P. 443–452.
- 13. Wang Y., Han Z., Ye G., Zhang Z., Zhang Z. Surface integrity and fatigue life in high-speed milling of die steel SKD61 (2015) Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 21 (11). P. 2995–3000. DOI: 10.13196/j.cims.2015.11.020.
- 14. Sinkovits T., Zhao Y., O'Brien R., Dowey S. X-ray diffraction stress analysis of interrupted titanium nitride films: Combining the sin2ψ and crystallite group methods (2014) Thin Solid Films, 562. P. 206–210. DOI: 10.1016/j.tsf.2014.04.054.
- 15. Promptov A.I., Zamashchikov Y. I., Residual stresses and strains in machining parts with low toughness. Вестник машиностроения. 1975. No. 4. P. 42–45.
- 16. Zamashchikov Y.I. Approximate inherent stress evaluation in calculation of residual deformations due to cutting. Improvement of the machine parts performances by technological methods, 1978. P. 71.

References

- 1. Zamashchikov Y.I. Equivalent Residual Stress Approach to the Surface Layer State / Int. J. Advances in Machining and Forming Operations, ISSN: 0975-4784, vol. 1, no. 1, January-June 2009, pp. 21–35.
- 2. Birger I. A. Ostatochnyye napryazheniya [Residual stresses]. Moscow: Mechanical Engineering Publ., 1963, 232 p. (In Russian).
- 3. Ivanov S. I. Determination of residual stresses in the cylinder surface layer. *Voprosy prochnosti elementov aviatsionnykh konstruktsiy* [Problems of Strength of Aviation Structure Elements], 1971, no. 48, pp. 153–168. (In Russian).
- 4. Henriksen E.K., Ithaca N.Y. 'Residual stresses in machined surfaces'. Trans. of the ASME 434, 1951, vol. 73, no. 1, pp. 69–76.
- 5. Timofeyev V.N. *K voprosu o napryazhennom sostoyanii poverkhnostnogo sloya stali pri tochenii* [To the problem of steel surface layer stressed state under turning]. *Zhurnal tekhnicheskoy fiziki* [Journal of Applied Physics], 1954, vol. 24, no. 7, pp. 1273–1281. (In Russian).
- 6. Ivanov S.I. K opredeleniyu ostatochnykh napryazheniy v tsilindre metodom kolets i polosok [To determination of residual stresses in a cylinder by the method of rings and strips]. Ostatochnyye napryazheniya [Residual

- stresses]. Kujbyshev: KuAI, 1971, Issue. 53, pp. 32–42. (In Russian).
- 7. Zamashchikov Y.I. *Sposob opredeleniya ostato-chnykh napryazheniy* [Method for residual stress determination]. Patent RF, no. 2121666 MK/J3, 1998.
- 8. Zaides S.A. Tekhnologiya eksperimental'nykh issledovaniy [Technology of experimental studies]. Irkutsk: Irkutsk State Technical University Publ., 2011, vol. 2, pp. 121–158. (In Russian).
- 9. Yablokova N.A. Analysis of the stress-strain state of gas-turbine blades by X-ray diffraction and mechanical by methods. *Nauchno-tehnicheskie vedomosti Sankt-Peterburgskogo gosudarstvennogo politehnicheskogo universiteta* [St. Petersburg Polytechnic University Journal of Engineering Science and Technology], 2011, no. 117, pp. 117–121. (In Russian).
- 10. García Navas V., Fernández D., Sandá A., Sanz C., Suzon S., De Mendiola, T.F. Surface integrity of AISI 4150 (50CrMo4) steel turned with different types of cooling-lubrication (2014). Procedia CIRP, 13, pp. 97–102. DOI: 10.1016/j.procir.2014.04.017
- 11. Liu G., Huang C., Zou B., Wang X., Liu Z. Surface integrity and fatigue performance of 17-4PH stainless steel after cutting operations (2016) Surface and Coatings Technology, 307, pp. 182–189. DOI: 10.1016/j.surfcoat.2016.08.086

Критерии авторства

Тихонов А.Г., Смольков П.С. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

- 12. Tekaslan O., Gerger N., Şeker U. A study on residual stresses formed on AISI 304 austenitic stainless steels when machined with different cutting parameters [Article@Aisi 304 östenitik paslanmaz çeliklerin farkli kesme parametreleri ile tornalama işleminden sonra oluşan kalici gerilmelerin araştirilmasi]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2009, no. 24 (3), pp. 443–452.
- 13. Wang Y., Han Z., Ye G., Zhang Z., Zhang Z. Surface integrity and fatigue life in high-speed milling of die steel SKD61 (2015) Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 21 (11), pp. 2995–3000. DOI: 10.13196/j.cims.2015.11.020.
- 14. Sinkovits T., Zhao Y., O'Brien R., Dowey S. X-ray diffraction stress analysis of interrupted titanium nitride films: Combining the sin2 ψ and crystallite group methods (2014). Thin Solid Films, 562, pp. 206–210. DOI: 10.1016/j.tsf.2014.04.054.
- 15. Promptov A.I., Zamashchikov Y.I., Residual stresses and strains in machining parts with low toughness. *Vest-nik mashinostroeniya* [Mechanical Engineering Bulletin], 1975, no. 4, pp. 42–45.
- 16. Zamashchikov Y.I. Approximate inherent stress evaluation in calculation of residual deformations due to cutting. Improvement of the machine parts performances by technological methods, 1978, p. 71.

Authorship criteria

Tikhonov A.G., Smolkov P.S. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Оригинальная статья / Original article УДК 004.832

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-46-62

ПРИМЕНЕНИЕ МЕТОДОВ УДОВЛЕТВОРЕНИЯ НЕЧИСЛОВЫХ ОГРАНИЧЕНИЙ В ЗАДАЧАХ КАЧЕСТВЕННОГО МОДЕЛИРОВАНИЯ СТАТИЧЕСКИХ И ДИНАМИЧЕСКИХ СИСТЕМ

© А.А. Зуенко¹, О.В. Фридман²

Институт информатики и математического моделирования, Кольский научный центр Российской академии наук, 184209, Российская Федерация, г. Апатиты, ул. Ферсмана, 24 A.

РЕЗЮМЕ. ЦЕЛЬ. В статье рассматривается возможность применения авторских методов распространения нечисловых ограничений к задаче качественного моделирования статических и динамических систем. Общим для рассматриваемых в работе моделей статических и динамических систем является то, что для описания состояния системы предполагается использовать только переменные, области определения которых конечны. Другой особенностью исследуемых систем является то, что их состояния могут содержать недоопределенные параметры: значение переменной может быть полностью не определено и задаваться в виде всего домена (области определения) либо полностью определено – представлять одноэлементное подмножество домена, либо недоопределено - задаваться в виде некоторого подмножества домена. Формализация описания таких состояний осуществляется с помощью векторов, где в качестве компонент выступают не единичные значения, а некоторые подмножества областей истинности соответствующих переменных. Еще одной особенностью рассматриваемых моделей является необходимость совместно обрабатывать количественные и качественные ограничения (зависимости) предметной области. МЕТОДЫ. Предлагаемые методы основываются на представлении качественных зависимостей (ограничений) предметной области в виде специализированных матрицеподобных структур (С- и D-систем), использование которых позволяет ускорить традиционные алгоритмы удовлетворения нечисловых ограничений и расширить область применения подобных алгоритмов. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Особый эффект от применения авторских методов следует ожидать в слабо формализованных предметных областях. При моделировании слабо формализованных предметных областей качественные ограничения над конечными доменами предлагается обрабатывать совместно с количественными в рамках технологии программирования в ограничениях. Предлагаемые методы носят итеративный характер и позволяют некоторые экземпляры задач CSP сводить к задачам меньшей размерности без организации ветвлений, анализируя специфические свойства предложенных матрицеподобных структур. ВЫВОДЫ. Применение авторских методов распространения нечисловых ограничений позволяет пополнить круг задач, решаемых с помощью упомянутой технологии, это: вывод в системах продукций с недоопределенными параметрами, реализация рассуждений в динамических интеллектуальных системах, структурный синтез систем на начальных этапах проектных работ, формирование учебных планов ВУЗов и др. Ключевые слова: моделирование слабо формализованных предметных областей, теория удовлетворения ограничений, распространение ограничений, матрицеподобные структуры, алгоритмы достижения совместности, нечисловые ограничения над конечными доменами.

Информация о статье. Дата поступления 21 мая 2018 г.; дата принятия к печати 12 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Зуенко А.А., Фридман О.В. Применение методов удовлетворения нечисловых ограничений в задачах качественного моделирования статических и динамических систем // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 46–62. DOI: 10.21285/1814-3520-2018-8-46-62

APPLICATION OF METHODS SATISFYING NON-NUMERICAL CONSTRAINTS IN THE PROBLEMS OF QUALITATIVE MODELING OF STATIC AND DYNAMIC SYSTEMS

A.A. Zuenko, O.V. Fridman

Institute of Informatics and Mathematical Modeling, Kola Science Center of the Russian Academy of Sciences, 24 A, Fersman St., Apatity, 184209, Russian Federation.

Olga V. Fridman, Candidate of technical sciences, Senior Researcher, e-mail: ofridman@imm.ru

¹Зуенко Александр Анатольевич, кандидат технических наук, старший научный сотрудник, e-mail: zuenko@iimm.ru Alexander A. Zuenko, Candidate of technical sciences, Senior Researcher, e-mail: zuenko@iimm.ru ²Фридман Ольга Владимировна, кандидат технических наук, старший научный сотрудник, e-mail: ofridman@iimm.ru

Информатика, вычислительная техника и управление Information Science, Computer Engineering and Management

ABSTRACT. PURPOSE. The article considers the possibility of applying the author's methods of non-numerical constraint propagation to the problem of qualitative modeling of static and dynamic systems. The general feature for the models of static and dynamical systems considered in this work is that it is intended to use only variables with finite domains for the description of the state of the system. Another feature of the systems under study is that their states may contain underdetermined parameters: the value of a variable can be either completely not determined and be set as a whole domain, or be completely determined and represent a one-element subset of the domain, or be underdetermined, i.e. be set in a kind of some subset of the domain. Formalization of such state description is carried out with the help of vectors, where the components are represented rather by some subsets of the truth sets of the variables than by corresponding single values. Another feature of the models under consideration is the need to co-process quantitative and qualitative constraints (dependences) of the subject domain. METHODS. The proposed methods are based on the representation of qualitative dependences (constraints) of the subject domain in the form of specialized matrix-like structures (C and D-systems), the use of which allows to accelerate the traditional algorithms of non-numerical constraint satisfaction and expand the scope of such algorithm use. RESULTS AND THEIR DISCUSSION. A special effect from the use of original methods can be expected in poorly formalized subject domains. When modeling poorly formalized subject domains it is proposed to coprocess qualitative constraints over the finite domains and quantitative constraints within the framework of constraint programming technology. The proposed methods are iterative and allow to reduce some instances of CSP tasks to smallerdimensional problems without branching with the analysis of the specific features of the proposed matrix-like structures. CONCLUSIONS. The use of author's methods of non-numeric constraint propagation allows to fill up the range of the problems solved with the help of the mentioned technology with such tasks as inference in production systems with underdetermined parameters, implementation of reasoning in dynamic intelligent systems, structural synthesis of the systems at the initial stages of design works, formation of university curricula and etc.

Keywords: modeling of poorly formalized subject domains, constraint satisfaction theory, constraint propagation, matrix-like structures, consistency algorithms, non-numeric constraints over finite domains.

Information about the article. Received May 21, 2018; accepted for publication July 12, 2018; available online August 31, 2018.

For citation. Zuenko A.A., Fridman O.V. Application of methods satisfying non-numerical constraints in the problems of qualitative modeling of static and dynamic systems. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 46–62. DOI: 10.21285/1814-3520-2018-8-46-62 (In Russian).

Введение

Настоящая статья посвящена вопросам качественного моделирования статических и динамических систем на основе авторских методов распространения нечисловых ограничений.

К типичным задачам, где качественное моделирование является более предпочтительным, относятся функциональные рассуждения, диагностика и проектирование на основе «исходных принципов» [1]. В таких случаях закономерности предметной области предпочтительнее описывать с помощью нечисловых (качественных) зависимостей, например, логических формул, систем продукций, многоместных отношений и т.п.

Однако задачи качественного моделирования сложных систем не ограничиваются только рассмотрением статических аспектов их функционирования. Часто требуется произвести анализ динамики подобных систем. В таком случае, сложные системы удобно моделировать в виде динамических интеллектуальных систем (ДИС) [2].

Результаты, полученные Г.С. Осиповым, касаются, прежде всего, вопросов управляемости ДИС без конкретизации способа представления знаний в интеллектуальной системе, а также методов замыкания текущего состояния и переходов к следующему состоянию. По мнению авторов, разработка методов, реализующих данные функции, является довольно сложной задачей, поскольку они относятся к классу методов комбинаторного поиска. В совокупности со способом представления знаний подобные методы составляют основу любой технологии моделирования рассматриваемых динамических систем и могут существенно повлиять на ее масштабируемость (размерность решаемых задач).

Общим для рассматриваемых в работе качественных моделей статических и динамических систем является то, что для описания состояния системы предполагается использовать только переменные, области определения которых конечны. Другой особенностью исследуемых систем является то, что их состояния могут содержать недоопределенные параметры [3]: значение переменной может быть либо полностью не определено и задаваться в виде всего домена (область определения), либо полностью определено – представлять одноэлементное подмножество домена, либо недоопределено - задаваться в виде некоторого подмножества домена. Формализация описания таких состояний осуществляется с помощью векторов, где в качестве компонент выступают не единичные значения, а некоторые подмножества областей истинности соответствующих переменных. Еще одной особенностью рассматриваемых моделей является необходимость совместно обрабатывать количественные и качественные ограничения (зависимости) предметной области.

Качественная модель позволяет решить задачу путем перебора всех возможных качественных вариантов поведения, которые соответствуют всем возможным сочетаниям значений параметров в модели. Другими словами, методы качественного моделирования сопряжены с перебором конечного числа комбинаций элементов, поэтому востребованы способы сокращения такого перебора.

В настоящей работе для ускорения процедур комбинаторного поиска предлагается использовать наработки, имеющиеся в теории удовлетворения ограничений.

Принципиальное отличие рассматриваемых в работе качественных ограничений от числовых состоит в том, что переменные даже в рамках одного ограничения могут иметь различные области определения, а сами ограничения, как правило, не являются бинарными. Существующие на данный момент в теории удовлетворения ограничений методы [4], основанные на табличном представлении нечисловых ограничений, являются недостаточно эффективными.

Предлагается качественные зависимости представлять в виде матриц ограничений (Си D-систем), а вывод на C- и D-системах выполнять с помощью авторских методов распространения нечисловых ограничений [5]. Перечисленные выше задачи, в том числе и задачу пополнения описания состояния динамической системы, предлагается решать в виде задач удовлетворения ограничений (Constraint Satisfaction Problem - CSP) [6]. Помимо экономии памяти, использование предложенного подхода к обработке нечисловых ограничений позволяет существенно ускорить традиционные алгоритмы-пропагаторы, основанные на табличном представлении подобных ограничений.

Методы распространения нечисловых ограничений на основе их матричного представления

Задача удовлетворения ограничений определена множеством переменных $x_1, x_2, ..., x_n$ и множеством ограничений C_1 , C_2 , ..., C_m . Каждая переменная x_i имеет непустую область определения D_i (домен). Каждое ограничение C_i включает некоторое подмножество переменных и задает допустимые комбинации значений для этого подмножества. Состояние задачи описывается как присваивание значений некоторым (частичное присваивание) или всем переменным (полное присваивание): $\{x_i = v_i, x_i = v_i, ...\}$. Решением задачи CSP является полное присваивание, которое удовлетворяет всем ограничениям.

Как и в работе [7], здесь для представления данных и знаний используются два типа матрицеподобных структур: С-системы и D-системы. Особенностью настоящих исследований является то, что эти структуры предлагается рассматривать как ограничения над конечными доменами, а рассуждения на данных структурах реализовывать в форме процедур удовлетворения ограничений.

ISSN 1814-3520

В работах [5; 8] приводятся конкретные методы решения задач CSP, основанные на матричном представлении ограничений с конечными доменами. Приведем здесь лишь утверждения, используемые в дальнейшем в примерах. Для простоты будем считать, что ограничения CSP могут быть представлены в виде единственной *D*-системы. В реальных же задачах – это совокупность *C*- и *D*- систем, числовых ограничений, глобальных ограничений [9].

Утверждение 1 (У1). Если хотя бы одна строка D-системы пуста (содержит все пустые компоненты), то D-система пуста (задача CSP несовместна).

Утверждение 2 (**У2**). Если все компоненты некоторого атрибута пусты, то данный атрибут можно удалить из *D*-системы (удаляются все компоненты, стоящие в соответствующем столбце), а пара «удаляемый атрибут – его домен» сохраняется в векторе частичного решения.

Утверждение 3 (У3). Если в *D*-системе есть строка (кортеж), содержащая лишь одну непустую компоненту, то все значения, не входящие в эту компоненту, удаляются из соответствующего домена.

Утверждение 4 (У4). Если строка *D*-системы содержит хотя бы одну полную компоненту, то данная строка удаляется (можно удалить соответствующее ограничение из системы ограничений).

Утверждение 5 (У5). Если компонента некоторого атрибута *D*-системы содержит значение, не принадлежащее соответствующему домену, то это значение удаляется из компоненты

Утверждения 1–5 позволяют исключать «лишние» значения из отдельных компонент, из доменов переменных, элиминировать строки и/или столбцы матриц ограничений, «сужая» область поиска. На основе перечисленных утверждений были модифицированы известные алгоритмы достижения дуговой и вершинной совместностей для случая нечисловых ограничений. Они останавливаются, достигнув некоторой неподвижной точки, при этом решение задачи CSP может быть еще не получено. Подобные алгоритмы обычно применяются совместно с алгоритмами поиска с возвратами [5], обеспечивающими систематическое исследование пространства поиска и/или с методами обработки глобальных ограничений [8].

Основное внимание в работе сосредоточено на рассмотрении областей применения именно методов распространения ограничений, разработанных на базе представленных утверждений.

Структурный синтез на элементах с ограниченной сочетаемостью

Рассмотрим задачу структурного синтеза в следующей формулировке. Пусть имеются основные элементы (блоки), реализующие некоторые подфункции и сгруппированные в классы, исходя из выполняемых подфункций. Требуется найти такую комбинацию этих блоков (структуру), которая позволяет реализовать заданную функцию. В работе [10] приведен пример: требуется спроектировать фонарик, который состоит из трех типов структурных элементов: источник света, узел корпуса, источник питания. Каждый тип структурного элемента допускает варианты реализации (см. табл. 1). Например, в качестве источника света могут выступать: лампа накаливания, жидкие кристаллы, неоновая лампа, газоразрядный источник света.

Допустимые комбинации значений обычно задаются с помощью специального N-дольного графа, где N — число классов структурных элементов [10]. Пара вершин связывается ребром только тогда, когда не существует запретов на сочетание соответствующих элементов. Любой полный N-вершинный подграф этого графа задает допустимую структуру проектируемого объекта. Однако более удобно и экономично указывать при проектировании дополнение этого графа — граф запретов.

На рис. 1. представлена обобщенная структура примера в виде многодольного графа, а на рис. 2. приведен граф запретов.

Обычно такого рода задачи решаются с привлечением алгоритмов на графах, например алгоритмов нахождения полных подграфов. Однако задачу структурного синтеза можно решать и методами удовлетворения ограничений. Далее показано, как типовые бинарные запреты представить в виде строк D-системы. Пусть X и Y переменные с областями определения D(X), D(Y) соответственно.

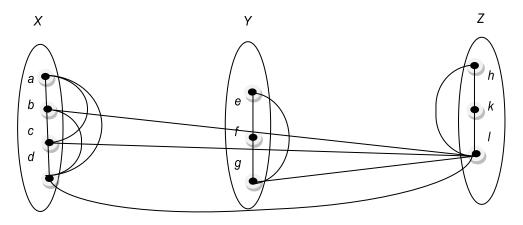

Типы структурных элементов и варианты их реализации

Table 1

Таблица 1

Types of structural elements and their implementation options

	Typee of elimetara.				
Обозначение элемента / Notation of element	Источник света / Illuminant	Обозначе- ние Элемента / Notation of element	Узел копуса / Housing unit	Обозначение элемента / Notation of element	Источник питания / Source of power
а	Лампа накаливания/ Incandescent lamp	е	Вертикальная компоновка/	h	Электриче- ская бата- рейка/
b	Жидкие кри- сталлы/ Liquid crystals	_	Vertical layout		Baby bat- tery
С	Неоновая лампа/ Neon lamp	f	Моноблок/ Monoblock	k	Аккумуля- тор/ Accumula- tor
d	Газоразрядный источник/ Gas-discharge source	g	Контейнерное исполнение/ Container execution	I	Ручной привод/ Hand power

Puc. 1. Представление обобщенной структуры в виде многодольного графа Fig. 1. Representation of a generalized structure in the form of a multipartite graph

1. Принуждение.

Выбор элемента $a \in D(X)$ влечет выбор элемента $b \in D(Y)$.

На языке логики: (X=a) → (Y=b) или \neg (X=a) \lor (Y=b).

С помощью матриц ограничений: $R[XY] = D(X) \setminus \{a\}, \{b\}$ [.

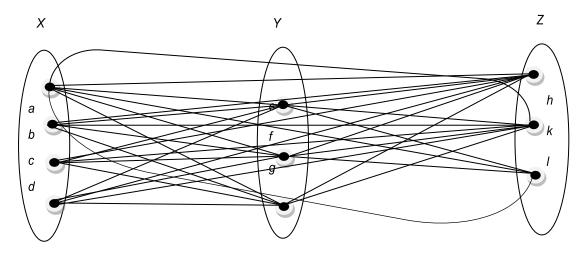
2. Бинарный запрет на сочетание.

Элементы $a \in D(X)$ и $b \in D(Y)$ не могут входить в одно решение.

На языке логики: \neg ((X=a) ∧ (Y=b)) или \neg (X=a) ∨ \neg (Y=b).

С помощью матриц ограничений: $R[XY] =]D(X)\setminus \{a\}, D(Y)\setminus \{b\}[.$

3. Двойное принуждение. $a \in D(X)$ и $b \in D(Y)$ входят в решение одновременно.


На языке логики: $((X=a) \land (Y=b))$.

С помощью матриц ограничений: $R[XY] = [\{a\}, \{b\}].$

Таким же образом можно представить и многоместные ограничения, которые неудобно описывать на языке теории графов.

Для решения задачи структурного синтеза в настоящей работе предлагается привлекать авторские алгоритмы распространения ограничений. В качестве примера рассмотрим, как формализовать граф запретов, представленный на рис. 2, в виде матрицеподобных структур.

Пример 1. Введем переменные X, Y, Z, соответствующие различным классам элементов (X – источник света, Y – узел корпуса, Z – источник питания). Области определения переменных: X – $\{a, b, c, d\}$, Y – $\{e, f, g\}$, Z – $\{h, k, l\}$.

Puc. 2. Граф запретов Fig. 2. Prohibition graph

Граф запретов можно представить в виде единственной С-системы:

$$egin{array}{cccc} X & Y & Z \ \{a,b,c,d\} & \{e,f,g\} & \{h,k,l\} \ 1 igg[\{b,c,d\} & * & \{l\} \ 2 igg[* & \{g\} & \{l\} \ \end{bmatrix}. \end{array}$$

Первая строка данной матрицы говорит о том, что элемент / связан в графе запретов с элементами b, c, d. Вторая строка утверждает наличие связи в графе запретов между элементами / и g. Строки матрицы моделируют ребра (совокупности ребер) в графе запретов, которые связывают элементы различных долей этого графа. Запреты на одновременное присутствие в решении различных элементов, принадлежащих одной и той же доле графа запретов, учитываются неявно — различные значения внутри одного и того же домена переменной являются взаимоисключающими.

Тогда допустимые комбинации элементов будут описываться в виде *D*-системы, которая является дополнением представленной выше *C*-системы:

$$X Y Z$$

$$\{a,b,c,d\} \{e,f,g\} \{h,k,l\}$$

$$1 \begin{cases} a\} \varnothing \{k,h\} \\ 2 \varnothing \{e,f\} \{k,h\} \end{cases}.$$

Чтобы посчитать дополнение C-системы, не требуется раскладывать C-систему в совокупность элементарных кортежей, достаточно вычислить дополнение каждой компоненты относительно соответствующего домена. В частности, дополнение компоненты C-системы, стоящей на пересечении первой строки и первого столбца: $\overline{\{b,c,d\}} = D_X \setminus \{b,c,d\} = \{a,b,c,d\} \setminus \{b,c,d\} = \{a\}$.

Далее проиллюстрируем применение предлагаемого метода распространения ограничений. Пусть требуется спроектировать фонарик, где в качестве источника питания выступает ручной привод, то есть накладывается еще одно ограничение на структуру, которое ранее не рассматривалось. Тогда задача CSP может быть записана в виде *D*-системы:

Последняя (третья) строка этой матрицы моделирует вновь введенное ограничение. Данная строка содержит лишь одну непустую компоненту. Последовательно применяя утверждения y_3 («сужаем» домен переменной Z до $\{l\}$), y_4 (удаляем третью строку матрицы), y_5 (исключаем значения x и y_4 из компонент y_5 первой и второй строк), y_6 (исключаем из рассмотрения атрибут y_6), имеем:

Частичное решение: $Z - \{l\}$. **Остаток D-системы**:

$$\begin{array}{ccc} X & Y \\ \{a,b,c,d\} & \{e,f,g\} \\ 1 \\ \ \, \{a\} & \varnothing & \left[\begin{array}{c} . \\ 2 \\ \ \, \varnothing & \{e,f\} \end{array} \right] \end{array}$$

Далее, снова воспользовавшись утверждениями **У3** и **У4**, получаем окончательное решение: $X - \{a\}$, $Y - \{e, f\}$, $Z - \{l\}$.

Другими словами, если в качестве источника питания выступает ручной привод, то источником света будет лампа накаливания, а узел корпуса — моноблок либо вертикальная компоновка. Переменные X и Z определены однозначно, переменная Y — недоопределена (характеризуется двумя альтернативными значениями).

Можно убедиться, анализируя рис. 1, что каждое из двух полученных решений: 1) X = a, Y = e, Z = I и 2) X = a, Y = f, Z = I соответствует полному трехвершинному подграфу графа, задающего допустимые сочетания элементов (рис. 1).

На практике часто возникает необходимость совместно обрабатывать количественные и качественные ограничения. Для количественных бинарных ограничений в теории удовлетворения ограничений разработаны специализированные эффективные методы их удовлетворения. Кроме того, в теории удовлетворения ограничений разработаны эффективные методы для совокупностей ограничений, подобные сложные ограничения называются глобальными [6]. Классическим примером глобального ограничения служит ограничение Alldiff, которое указывает, что все участвующие в нем переменные (полагается, что переменных больше двух)

должны иметь разные значения. Другим примером глобального ограничения служит кумулятивное ограничение, о котором речь пойдет в следующем разделе. Такого рода ограничения не имеет смысла выражать в виде таблиц или матриц ограничений.

Совместная обработка количественных и качественных ограничений на примере формирования учебного плана ВУЗа

Для иллюстрации возможностей совместного использования существующих алгоритмов удовлетворения глобальных ограничений и авторских методов распространения нечисловых ограничений выбрана задача составления ученого плана ВУЗа.

В работе [11] описана постановка задачи синтеза учебных планов ВУЗов, раскрыты основные этапы его формирования, ограничения, налагаемые на учебный план др.

Допустимым учебным планом называют учебный план, удовлетворяющий перечню специфических ограничений. Данный перечень можно разбить на две группы — количественные и качественные ограничения. В [12] приведен список основных ограничений, которые используются большинством авторов, разрабатывающих учебные планы.

Учебные дисциплины, входящие в план, связаны между собой: в более поздних по времени изучения дисциплинах используется информация из ранее изученных. Для тщательного рассмотрения структуры учебного материала дисциплины дробятся на более мелкие единицы, называемые модулями.

Помимо, чисто логических ограничений «модули преподаются одновременно/не одновременно», «модуль *i* предшествует модулю *j*», дополнительно накладываются числовые ограничения типа «для определенной совокупности модулей (например, в одном семестре, в рамках дисциплины и т.п.) отводится не более чем предписанное количество зачетных единиц трудоемкости (ЗЕТ)». Следовательно, требуется совместно обрабатывать количественные и качественные ограничения представленных типов. С точки зрения авторов, подобную обработку целесообразно производить в рамках технологии программирования в ограничениях.

Пример 2. Рассмотрим задачу составления фрагмента учебного плана для пяти модулей M_1 , M_2 , M_3 , M_4 , M_5 (каждый из которых преподается в течение одного семестра). Любые модули могут преподаваться в одном семестре, если это не противоречит следующим ограничениям: 1) M_1 преподается после M_3 ; 2) M_3 преподается до M_4 и после M_5 ; 3) M_2 не может преподаваться в том же семестре, что M_1 или M_4 ; 4) M_4 не может преподаваться во втором семестре.

Кроме чисто логических ограничений накладывается следующее кумулятивное ограничение: объем модуля M_1 составляет 5 ЗЕТ, объем модуля M_2 – 7 ЗЕТ, объем модуля M_3 – 3 ЗЕТ, объем модуля M_4 – 5 ЗЕТ, объем модуля M_5 – 4 ЗЕТ. Суммарный объем преподаваемых модулей за семестр не должен превышать 10 ЗЕТ.

Требуется так расставить модули по трем первым учебным семестрам, чтобы ограничения удовлетворялись.

Решение. Введем пять атрибутов — X_1 , X_2 , X_3 , X_4 , X_5 , соответствующих модулям, с доменами $\{1, 2, 3\}$, где: 1 — первый семестр, 2 — второй семестр, 3 — третий семестр.

Формулировка задачи опирается на два типа бинарных отношений: «преподавать до/позже чем» и «преподавать одновременно/не одновременно».

Рассмотрим, как формализовать в виде D-системы отношение « M_1 преподается после M_3 ». Отношение « M_1 преподается до или одновременно с M_3 » на языке матриц ограничений выглядит так:

$$C1[X_1X_3] = \begin{bmatrix} \{1\} & * \\ \{2\} & \{2,3\} \\ \{3\} & \{3\} \end{bmatrix}.$$

Тогда его дополнение, представляющее собой требуемую формализацию, записывается в виде:

$$D1[X_1X_3] = \begin{bmatrix} 2,3 \} & \emptyset \\ \{1,3 \} & \{1 \} \\ \{1,2 \} & \{1,2 \} \end{bmatrix}.$$

По аналогии, сформируем D-системы $D2[X_3X_5]$ и $D3[X_4X_3]$, соответствующие условиям « M_3 преподается после M_5 », « M_4 преподается после M_3 » (равносильно утверждению « M_3 преподается до M_4 », заданному в условии задачи).

Формализация следующего отношения « M_2 не может преподаваться в том же семестре, что M_1 или M_4 » осуществляется путем пересечения двух представленных ниже D-систем D4 и D5:

$$D4[X_1X_2] = \begin{bmatrix} \{2,3\} & \{2,3\} \\ \{1,3\} & \{1,3\} \\ \{1,2\} & \{1,2\} \end{bmatrix} \text{ in } D5[X_2X_4] = \begin{bmatrix} \{2,3\} & \{2,3\} \\ \{1,3\} & \{1,3\} \\ \{1,2\} & \{1,2\} \end{bmatrix}.$$

Так $D4[X_1X_2]$ получается вычислением дополнения от $C4 = \begin{bmatrix} \{1\} & \{1\} \\ \{2\} & \{2\} \\ \{3\} & \{3\} \end{bmatrix}$, моделирующей

утверждение « M_2 преподается в том же семестре, что M_1 ».

Наконец, утверждение « M_4 не может преподаваться во втором семестре» записывается как отрицание утверждения « M_4 преподается во втором семестре»:

$$D6[X_1X_2X_3X_4X_5] = \overline{[* * * * \{2\} *]} =]\emptyset \emptyset \emptyset \emptyset \{1,3\} \emptyset [.$$

Тогда общая формулировка задачи выражается как следующая *D*-система:

	\boldsymbol{X}_1	X_2	X_3	$X_{\scriptscriptstyle 4}$	X_{5}
	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}	{1,2,3}
1	{2,3}	Ø	Ø	Ø	Ø「
2	{1,3}	Ø	{1}	Ø	Ø
3	{1,2}	Ø	{1,2}	Ø	Ø
4	Ø	Ø	{2,3}	Ø	Ø
5	Ø	Ø	{1,3}	Ø	{1}
6	Ø	Ø	{1,2}	Ø	{1,2}
7	Ø	Ø	Ø	{2,3}	Ø
8	Ø	Ø	{1}	{1,3}	Ø
9	Ø	Ø	{1,2}	{1,2}	\otimes .
10	{2,3}	{2,3}	Ø	Ø	Ø
11	{1,3}	{1,3}	Ø	Ø	Ø
12	{1,2}	{1,2}	Ø	Ø	Ø
13	Ø	{2,3}	Ø	{2,3}	Ø
14	Ø	{1,3}	Ø	{1,3}	Ø
15	Ø	{1,2}	Ø	{1,2}	Ø
16	Ø	Ø	Ø	{1,3}	Ø

Анализируя строки 1, 4, 7, 16, по **УЗ** можно усечь домены для X_1 , X_3 , X_4 , получим такие соответствия между атрибутами и их доменами: $X_1 - \{2, 3\}$, $X_2 - \{1, 2, 3\}$, $X_3 - \{2, 3\}$, $X_4 - \{3\}$, $X_5 - \{1, 2, 3\}$.

При этом для преподавания в одном семестре модулей M_4 и M_1 требуется 10 ЗЕТ, M_4 и M_2 – 12 ЗЕТ, M_4 и M_3 – 8 ЗЕТ, а для преподавания M_4 и M_5 – 9 ЗЕТ. Следовательно, кумулятивное ограничение для третьего семестра нарушено лишь для модулей M_4 и M_2 . Для устранения этой некорректности из домена атрибута X_2 исключается значение «3», имеем: X_1 – {2, 3}, X_2 – {1, 2}, X_3 – {2, 3}, X_4 – {3}, X_5 – {1, 2, 3}.

Затем атрибут X_4 элиминируется из D-исходной системы, поскольку его домен стал одноэлементным множеством $\{3\}$.

В результате «настройки» D-системы на новые домены, применяя правило **У4**, исключаются из рассмотрения строки 1, 4, 7, 8, 10, 12, 13, 14, 15, 16.

Далее, используя **У5**, получим:

Частичное решение: $X_4 - \{3\}$.

Остаток D-системы:

На основе анализа строки 2 можно сузить домен атрибута X_1 до единственного значения $(X_1 - \{3\})$. Поскольку ранее было получено $X_4 - \{3\}$, то, с учетом суммарного объема ЗЕТ для M_1 и M_4 в третьем семестре (9 ЗЕТ), никакой другой модуль уже не может преподаваться одновременно с M_1 и M_4 . Другими словами, значение «3» можно исключить из областей определения других атрибутов. На текущем шаге имеем: $X_1 - \{3\}$, $X_2 - \{1,2\}$, $X_3 - \{2\}$, $X_5 - \{1,2\}$. Поскольку более не обнаружено нарушения кумулятивного ограничения, то рассмотрим D-систему, оставшуюся после «настройки» на новые домены (согласно **У4** и **У5**, уходят все строчки, кроме пятой, а в пятой остается лишь одна непустая компонента; атрибуты X_1 и X_3 элиминируются). Получим:

Частичное решение: $X_1 - \{3\}$, $X_3 - \{2\}$, $X_4 - \{3\}$. **Остаток D-системы**:

$$X_2$$
 X_5 {1,2} {1,2} $] \varnothing$ {1}[.

Откуда $X_5 - \{1\}$, следовательно, $X_2 - \{2\}$, поскольку модули M_2 и M_5 не могут преподаваться одновременно. В результате получено решение: $X_1 - \{3\}$, $X_2 - \{2\}$, $X_3 - \{2\}$, $X_4 - \{3\}$, $X_5 - \{1\}$. Другими словами – в первом семестре преподается модуль M_5 , во втором – M_2 и M_3 , в третьем – M_1 и M_4 .

В данной задаче в качестве дополнительного правила редукции используется кумулятивное ограничение, что позволяет решить задачу также за полиномиальное время без организации ветвления.

Реализация рассуждений в динамических интеллектуальных системах

Динамическая система, основанная на правилах – это четверка [9]: D=<X, T, Φ , $\Psi>$, где X – множество фактов, T – дискретное упорядоченное множество моментов времени, Φ : 2^X – функция замыкания, Ψ : 2^X × T \to 2^X – функция переходов. Причем, функции замыкания и переходов реализуются правилами замыкания Π_{CL} и переходов Π_{TR} соответственно.

В настоящей работе предлагается:

- 1. Задачу пополнения описания состояния динамической системы рассматривать как задачу CSP. Правила замыкания рассматривать как ограничения и записывать в виде совокупности *C* и *D*-систем.
- 2. Описание текущего состояния считать полным, когда предложенные алгоритмы распространения ограничений останавливаются, достигнув неподвижной точки.

Рассмотрим пример ДИС, который является упрощенным вариантом задачи «Мир вампуса», описанной в [6]. Робот должен выполнить некоторое задание, например, обнаружить клад в среде, которая представляет собой совокупность залов, соединенных проходами. Залы расположены в виде решетки 4х4. На рис. З приводится схема среды, в которой робот должен выполнить задание. Робот всегда начинает движение с нижнего левого квадрата, обозначенного как [1,1], и смотрит вправо. При движении он может идти вперед, поворачиваться влево и вправо на 90° . В каждом квадрате, отличном от начального, с вероятностью 0,2 может находиться непроходимое препятствие — яма ($\textbf{\textit{P}}$). Местонахождения клада ($\textbf{\textit{C}}$) и зала ($\textbf{\textit{U}}$), в которых робот будет уничтожен «врагом», выбираются случайным образом с равномерным распределением из числа квадратов, отличных от начального. Предположим, что в каждом зале находится либо «враг», либо клад, либо яма, либо зал пуст.

1,4	2,4	3,4	4,4
			Яма
1,3	2,3	3,3	4,3
Враг	Клад	Яма	
1,2	2,2	3,2	4,2
1,1	2,1	3,1	4,1
Робот		Яма	

Puc. 3. Схема среды, в которой робот должен выполнить задание Fig. 3. Scheme of the environment in which the robot must perform the task

У робота имеются датчики:

- 1. В квадрате, где находится «враг», а также в квадратах, непосредственно (а не по диагонали) соседних по отношению к этому квадрату, робот чувствует неприятный запах (переменная X_{ij} принимает значение 1).
- 2. В квадратах, непосредственно соседних с ямой, робот будет ощущать ветерок (переменная Y_{ii} принимает значение 1).
 - 3. В зале с кладом робот видит блеск (переменная Z_{ij} принимает значение 1).

Результаты актов восприятия передаются роботу в форме кортежа, например, если есть неприятный запах и ветерок, но нет блеска, робот получает результаты акта восприятия в виде следующей *C*-системы, состоящей из одной строки: $S_{ij}[XYZ] = [\{1\}, \{0\}], где ij - адрес клетки.$

Записанный таким образом кортеж значений моделирует область истинности логической формулы $X_{ij} \wedge Y_{ij} \wedge \neg Z_{ij}$.

Основная сложность для робота состоит в том, что он с самого начала не знает конфигурацию своей среды. Первоначальная база знаний робота содержит правила существования в этой среде, которые были описаны выше; в частности, он знает, что находится в квадрате [1,1] и что квадрат [1,1] является безопасным. Знания робота расширяются по мере того, как поступают результаты новых актов восприятия и выполняются действия. Первым восприятием является $S_{11}[XYZ] = [\{0\} \{0\} \{0\}]$, или $\neg X_{11} \land \neg Y_{11} \land \neg Z_{11}$, на основании которого робот может сделать вывод, что соседние по отношению к нему квадраты являются безопасными (там либо клад, либо пусто). Для указания этого факта они отмечены *ОК*. На рис. 4 *а* показано состояние знаний робота в этот момент.

Робот переходит только в квадрат, о котором известно, что в нем есть отметка OK. Предположим, что он решил двинуться вперед, в квадрат [2,1], и было достигнуто состояние, показанное на рис. 4 OE. Робот обнаруживает ветерок в квадрате [2,1], то есть $S_{21}[XYZ] = [\{0\} \{1\} \{0\}]$ или $-X_{21} \land Y_{21} \land -Z_{21}$,

поэтому в одном из соседних квадратов должна быть яма. По условиям задачи она не может находиться в квадрате [1,1], поэтому должна быть хотя бы в одном из квадратов [2,2], или [3,1].

На рисунках более темным цветом помечены клетки, в которых находится робот в текущий момент, а более светлым – те, о которых имеется информация или они уже были посещены. В данный момент известен только один квадрат с отметкой *ОК*, который еще не был посещен, поэтому робот переходит в квадрат [1,2].

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2
1,1 OK	2,1 OK	3,1	4,1
		а	

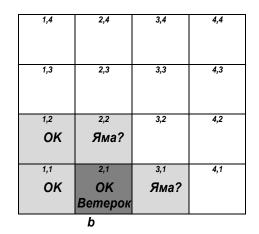


Рис. 4. Первый шаг, выполненный роботом: первоначальная ситуация, возникшая после восприятия $\neg X_{11} \land \neg Y_{11} \land \neg Z_{11}$ (a); ситуация после одного хода, в котором получено восприятие $\neg X_{21} \land Y_{21} \land \neg Z_{21}$ (b) Fig. 4. The first step performed by the robot: initial situation that arose after the perception of $\neg X_{11} \land \neg Y_{11} \land \neg Z_{11}$ (a); situation after one move in which the perception $\neg X_{21} \land Y_{21} \land \neg Z_{21}$ (b) is received

Новым восприятием в квадрате [1,2] является $S_{12}[XYZ]$ = [{1} {0} {0}] или $X_{12} \land \neg Y_{12} \land \neg Z_{12}$, что приводит к состоянию знаний, показанному на рис. 5 a.

Теперь робот убедился, что в квадрате [2,2] нет ни ямы, ни «врага», поэтому можно обозначить этот квадрат меткой OK и перейти в него. После того, как робот перешел в квадрат [2,2], $S_{22}[XYZ] = [\{0\} \{0\} \{0\}]$ или $-X_{22} \land -X_{22}$.

Далее предполагаем, что робот перешел в квадрат [2,3], в результате чего было получено состояние, показанное на рис. 5 б. В квадрате [2,3] робот обнаруживает блеск, $S_{23}[XYZ] = [\{1\}\{1\}\{1\}]$ или $X_{23} \wedge Y_{23} \wedge Z_{23}$, значит, клад там и цель достигнута.

Информатика, вычислительная техник	каиу	управление
Information Science, Computer Engineering	and	Management

1,4	2,4	3,4	4,4
Bpas!	2,3	3,3	4,3
^{1,2} ОК Запах	2,2	3,2	4,2
1,1	2,1	3,1	4,1
ОК	ОК Ветерок	Яма!	

1,4	2,4	3,4	4,4
	Яма?		
1,3	^{2,3} Запах	3,3	4,3
Враг!	Beme-	Яма?	
	рок		
	Клад		
1,2	2,2	3,2	4,2
OK	OK		
Запах			
1,1	2,1	3,1	4,1
OK	OK	Яма!	
	Ветерок		

Рис. 5. Два последних этапа в ходе выполнения роботом задания: после третьего хода получено восприятие $X_{12} \wedge \neg Y_{12} \wedge \neg Z_{12}$ (a); после пятого хода, когда получено восприятие $X_{23} \wedge Y_{23} \wedge Z_{23}$ (b) Fig. 5. Last two stages of robot's execution of the task: after the third move the perception $X_{12} \wedge \neg Y_{12} \wedge \neg Z_{12}$ (a) is received; after the fifth move, when the perception $X_{23} \wedge Y_{23} \wedge Z_{23}$ (b) is received

Рассмотрим возможности применения авторских методов удовлетворения ограничений в ДИС на описанном выше примере.

Пример 3. Рассмотрим один шаг функционирования робота и фрагмент базы знаний, который необходим роботу для пополнения описания начального состояния (робот находится в квадрате [1,1] и еще никуда не двигался). Для каждой клетки [i, j], помимо уже упоминаемых нами переменных X_{ij} , Y_{ij} , Z_{ij} , введем переменные K_{ij} . Областью определения каждой из переменных K_{ij} является множество {a, p, c, u}, где: a — клетка не содержит объектов, кроме, возможно, самого робота; p — в секторе находится яма; c — в секторе находится клад; u — в секторе находится взаимоисключающими.

Фрагмент базы знаний на первом шаге:

- 1. $\neg ((K_{11} = p) \lor (K_{11} = u))$ или $(K_{11} = a) \lor (K_{11} = c)$.
- 2. $X_{11} \equiv ((K_{12} = p) \vee (K_{21} = p)).$
- 3. $\neg X_{11}$.
- 4. $Y_{11} \equiv ((K_{11} = u) \vee (K_{12} = u) \vee (K_{21} = u)).$
- 5. $\neg Y_{11}$.
- 6. $Z_{11} \equiv (K_{11} = c)$.
- 7. $\neg Z_{11}$.

Заметим, что утверждения 3, 5, 7, соответствуют акту восприятия робота на первом шаге. Правило 1 говорит о том, что в квадрате [1,1] нет опасности. Правило 2 утверждает, что наличие ветерка в секторе [1,1] равносильно наличию ямы в одном из соседних квадратов. Правило 4 позволяет судить по запаху в секторе [1,1] о наличии/отсутствии врага в данном и соседних с ним квадратах. Правило 6 позволяет по блеску определять наличие/отсутствие клада в секторе [1,1]. Правила 2, 4, 6 являются правилами замыкания текущего состояния и устанавливают связь между наблюдаемыми и выводимыми параметрами. В данном примере функция переходов к следующему состоянию нами не рассматривается.

Запишем эти правила в виде *D*-систем, сформированных в пространстве признаков X_{11} × Y_{11} × Z_{11} × K_{11} × K_{12} × K_{21} :

1.]
$$\varnothing$$
 \varnothing \varnothing { a,c } \varnothing \varnothing [.

Данную систему правил можно представить в виде единственной *D*-системы, содержащей все строки приведенных выше *D*-систем:

	X_{11}	Y_{11}	Z_{11}	K_{11}	K_{12}	K_{21}	
{	0,1}	{0,1}	{0,1}	$\{a,p,c,u\}$	$\{a,p,c,u\}$	$\{a, p, c,$	<i>,u</i> }
1	$ \varnothing $	\varnothing	Ø	$\{a,c\}$	Ø	Ø	_
2	{0}	\varnothing	Ø	Ø	$\{p\}$	$\{p\}$	
3	{1}	\varnothing	\varnothing	Ø	$\{a,c,u\}$	Ø	
4	{1}	\varnothing	\varnothing	Ø	\varnothing	$\{a,c,u\}$	
5	{0}	\varnothing	\varnothing	Ø	\varnothing	Ø	
6	Ø	{O}	\varnothing	{ <i>u</i> }	{ <i>u</i> }	{ <i>u</i> }	
7	Ø	{1}	\varnothing	$\{a,p,c\}$	\varnothing	Ø	
8	Ø	{1}	\varnothing	Ø	$\{a,p,c\}$	Ø	
9	Ø	{1}	\varnothing	Ø	\varnothing	$\{a, p, c\}$	
10	Ø	{O}	\varnothing	Ø	\varnothing	Ø	
11	Ø	\varnothing	{0}	$\{c\}$	Ø	Ø	
12	Ø	\varnothing	{1}	$\{a,p,u\}$	\varnothing	Ø	
13_	$ \varnothing $	Ø	{0}	Ø	Ø	Ø	

Представленная выше *D*-система содержит 4 строки, содержащих по одной непустой компоненте (строки 1, 5, 10, 13). Для данных строк последовательно применяются утверждения **У3** (домены переменных X_{11} , Y_{11} , Z_{11} , K_{11} равны $\{0\}$, $\{0\}$, $\{0\}$, $\{a, c\}$, соответственно), затем **У5** (из компонент удаляются значения не принадлежащие вновь полученным доменам), а после утверждение У4 (элиминируются строки 1, 2, 5, 6, 7, 10, 11, 13). Теперь, согласно У2, можно вычеркнуть столбцы матрицы, соответствующие атрибутам X_{11} , Y_{11} , Z_{11} . Получим:

Частичное решение: $X_{11} - \{0\}$, $Y_{11} - \{0\}$, $Z_{11} - \{0\}$.

59

Остаток D-системы:

$$K_{11} \quad K_{12} \quad K_{21}$$

$$\{a,c\} \quad \{a,p,c,u\} \quad \{a,p,c,u\}$$

$$3 \quad \varnothing \quad \{a,c,u\} \quad \varnothing$$

$$4 \quad \varnothing \quad \varnothing \quad \{a,c,u\}$$

$$8 \quad \varnothing \quad \{a,p,c\} \quad \varnothing$$

$$9 \quad \varnothing \quad \varnothing \quad \{a,p,c\}$$

$$12 \quad \{a,p,u\} \quad \varnothing \quad \varnothing$$

Продолжая применять упомянутые утверждения, получим окончательное решение: X_{11} – $\{0\}$, Y_{11} – $\{0\}$, Z_{11} – $\{0\}$, K_{11} – $\{a\}$, K_{12} – $\{a$, $c\}$, K_{21} – $\{a$, $c\}$. Все строки D-системы в ходе вывода оказываются вычеркнутыми без образования пустых строк. Следовательно, не просто остановились, достигнув некоторой неподвижной точки, а получено решение поставленной задачи CSP.

Для клетки [1,1] робот делает однозначный вывод о том, что в ней не находится посторонних объектов (ям, врагов, клада). Домены переменных K_{12} и K_{21} сузились и позволяют судить о том, что в клетках [1,2] и [2,1] нет опасности для робота, то есть он может перейти туда на следующем шаге. Однако без дополнительной информации (дополнительных актов восприятия) робот не может однозначно установить, имеется в какой-либо из клеток [1,2] и [2,1] клад или нет.

Заключение

В работе предлагается при моделировании слабо формализованных предметных областей качественные ограничения над конечными доменами обрабатывать совместно с количественными в рамках технологии программирования в ограничениях. Применение авторских методов распространения нечисловых ограничений позволяет пополнить круг задач, решаемых с помощью упомянутой выше технологии, такими задачами, как вывод в системах продукций с недоопределенными параметрами [13–14], моделирование динамических интеллектуальных систем, структурный синтез систем на начальных этапах проектных работ и др. Авторские методы, в отличие от аналогов, позволяют редуцировать задачу CSP даже если она изначально не была представлена посредством совокупности лишь унарных и бинарных ограничений. Методы носят итеративный характер и позволяют некоторые экземпляры задач CSP сводить к задачам меньшей размерности без организации ветвлений, анализируя специфические свойства предложенных матрицеподобных структур.

Работа выполнена при финансовой поддержке РФФИ (проекты № 16-07-00377а, 16-07-00562а, 16-07-00273а, 18-07-00615а).

Библиографический список

- 1. Братко И. Алгоритмы искусственного интеллекта на языке PROLOG. 3-е изд. / пер. с англ. М.: Вильямс, 2004. 635 с.
- 2. Осипов Г.С. Методы искусственного интеллекта. М.: Физматлит, 2011. 296 с.
- 3. Нариньяни А.С., Иванов Д.А., Седреев С.В., Фролов С.А. Недоопределенное календарное планирование: новые возможности // Информационные технологии. 1997. № 1. С. 34–37.
- 4. Bartak R. Constraint Programming: In Pursuit of the Holy Grail // Proceedings of the Week of Doctoral Students (WDS99), Part IV. Prague: MatFyzPress. 1999. P. 555–564.
- 5. Зуенко А.А. Вывод на ограничениях с применением матричного представления конечных предикатов // Искусственный интеллект и принятие решений. 2014. № 3. С. 21–31.

Информатика, вычислительная техника и управление Information Science, Computer Engineering and Management

- 6. Рассел С., Норвиг П. Искусственный интеллект: современный подход. 2-е изд. / пер. с англ. М.: Вильямс. 2006. 1408 с.
- 7. Кулик Б.А. Зуенко А.А., Фридман А.Я. Алгебраический подход к интеллектуальной обработке данных и знаний. СПб.: Изд-во Политехн. ун-та. 2010. 235 с.
- 8. Зуенко А.А. Совместное применение алгоритмов фильтрации и распространения ограничений на основе матриц ограничений // Системный анализ и информационные технологии: материалы VI Междунар. конф. В 2-х ч. (г. Светлогорск, 15–20 июня 2015). Светлогорск, 2015. Ч. 1. С. 56–66.
- 9. Ruttkay Zs. Constraint satisfaction a survey // CWI Quarterly. 1998. Vol. 11. P. 163-214.
- 10. Божко А.Н., Толпаров А.Ч. Структурный синтез на элементах с ограниченной сочетаемостью. [Электронный ресурс]. URL: http://www.techno.edu.ru:16001/db/msq/13845.html (10.03.2018).
- 11. Коршунов С.В. Проектирование основных образовательных программ вуза при реализации уровневой подготовки кадров на основе федеральных государственных образовательных стандартов. М.: Межотраслевой институт повышения квалификации при МГТУ им. Н.Э. Баумана, 2010. 212 с.
- 12. Фридман О.В. Анализ программных продуктов для автоматизации формирования учебного плана вуза // Труды Кольского научного центра РАН. Информационные технологии. 2015. Вып. 6. С. 152–175.
- 13. Зуенко А.А., Фридман О.В. Матрицеподобные вычисления при обработке недоопределенных знаний в продукционных системах (на примере задачи выбора технологии обогащения минерального сырья) // Труды института системного анализа Российской академии наук. 2015. Т. 65. № 1. С. 44–56.
- 14. Зуенко А.А. Применение методов распространения ограничений в слабо формализованных предметных областях // Пятнадцатая национальная конференция по искусственному интеллекту с международным участием: материалы XV конференции. В 3-х ч. (г. Смоленск, 3–7 октября 2016 г.). Смоленск, 2016. Ч. 3. С. 22–30.

References

- 1. Bratko I. Algorithms of artificial intelligence in PROLOG language. 2004. 640 p. (Russ. ed.: *Algoritmy iskustvennogo intellekta na yazuke PROLOG.*). Moscow: Publishing House «Vilyams», 2004. 640 p.). (In Russian).
- 2. Osipov G.S. *Metody Iskustvennogo intellecta* [Methods of artificial intelligence]. Moscow: Fizmatlit Publ., 2011. 296 p. (In Russian).
- 3. Narinyani A.S., Ivanov D.A., Sedreev S.V., Frolov S.A. Underdetermined scheduling: new opportunities. *Informatsionnye tehnologii* [Information Technologies], 1997, no. 1, pp. 34–37. (In Russian).
- 4. Bartak R. Constraint Programming: In Pursuit of the Holy Grail // Proceedings of the Week of Doctoral Students (WDS99), Part IV. Prague: MatFyzPress. 1999, pp. 555–564.
- 5. Zuenko A.A. Conclusion on constraints using the matrix representation of finite predicates. *Iskustvennui intellect I prinyatie reshenii* [Artificial Intelligence and Decision Making], 2014, no. 3, pp. 21–31. (In Russian).
- 6. Rassel S., Norvig P. Artificial intelligence: a modern approach, 2006, 1408 p. (Russ. ed.: *Iskustvennui intellect: sov-remennui podhod*. Moscow, Publishing House «Vilyams», 2006, 1408 p.). (In Russian).
- 7. Kulik B.A., Zuenko A.A., Fridman A.Ya. *Algebraicheskii podhod k intellektualnoi obrabotke dannuh I znanii* [Algebraic approach to intelligent data and knowledge processing]. Saint-Petersburg: Publishing house of Polytechnic University, 2010, 235 p. (In Russian).
- 8. Zuenko A.A. Sovmestnoe primeneine algoritmov filtratsii i rasprostraneniya ogranichenii na osnove matrits ogranichenii [Joint application of filtering and constraint propagation algorithms based on constraint matrices]. Materialy VI Mezhdunarodnoj konferencii "Sistemnui analiz i informatsionnue tehnologii" [Proceedings of VI International Conference "System Analysis and Information Technologies" Svetlogorsk, 15 June 2015]. Svetlogorsk, 2015, vol. 1, pp. 56–66. (In Russian).
- 9. Ruttkay Zs. Constraint satisfaction a survey // CWI Quarterly, 1998, vol. 11, pp. 163–214.
- 10. Bozko A.N., Tolparov A. Ch. *Strukturnyi sintez na elementah s ogranichennoi sochetaemostu* [Structural synthesis on the elements with limited compatibility]. Available at: http://www.techno.edu.ru:16001/db/msg/13845.html. (accessed 10 March 2018). (In Russian).
- 11. Korshunov S.V. *Proektirovanie osnovnykh obrazovatel'nykh programm vuza pri realizatsii urovnevoj podgotovki kadrov na osnove federal'nykh gosudarstvennykh obrazovatel'nykh standartov* [Designing of university basic educational programs under implementation of level personnel training on the basis of the Federal State Educational Standards]. Moscow: Interdisciplinary Institute for advanced training at Bauman Moscow state technical university, 2010, 212 p. (In Russian).
- 12. Fridman O.V. Analysis of software for automating development of educational plans of the university. *Trudu Kolskogo nauchnogo centra RAN Informatsionnue tehnologii* [Proceedings of the Kola Science Center RAS. Information Technology], 2015, vol. 6, pp. 152–175. (In Russian).
- 13. Zuenko A.A., Fridman O.V. Matrix-like computations when processing underdetermined knowledge in production systems (on example of the problem of selecting the technology for mineral raw materials concentration). *Trudy instituta sistemnogo analiza Rossijskoj akademii nauk* [Proceeding of the Institute for Systems Analysis of the Russian Academy of Science], 2015, vol. 65, no. 1, pp 44–56. (In Russian).
- 14. Zuenko A.A. *Primenenie metodov rasprostraneniya ogranichenij v slabo formalizovannyh predmetnyh oblastyah* [Application of methods of constraint propagation in poorly formalized subject areas]. *Materialy XV konferencii "Pyatnadcataya*

Информатика, вычислительная техника и управление Information Science, Computer Engineering and Management

nacional'naya konferenciya po iskusstvennomu intellektu s mezhdunarodnym uchastiem" [Proceedings of XV Conference "15th National Conference on Artificial Intelligence with international participation, Smolensk, 3–7 October 2016]. Smolensk, 2016, part 3, pp. 22–30. (In Russian).

Критерии авторства

Зуенко А.А., Фридман О.В. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Authorship criteria

Zuenko A.A., Fridman O.V. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Оригинальная статья / Original article УДК 004.85:681.51.01

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-63-71

ИССЛЕДОВАНИЕ ШИМ-ЭЛЕМЕНТА СО СПАЙКОВОЙ НЕЙРОННОЙ СЕТЬЮ

© И.В. Игумнов¹

Иркутский национальный исследовательский технический университет, 664074, Российская Федерация, г. Иркутск, ул. Лермонтова, 83.

РЕЗЮМЕ. ЦЕЛЬ. Показать возможность применения спайковой (импульсной) модели нейрона в автоматических системах регулирования с регулятором, осуществляющим широтно-импульсную модуляцию, который имеет в своем составе искусственную нейронную сеть. **МЕТОДЫ**. Ввиду того, что использование регуляторов такого вида вынуждает решать задачу параметрической оптимизации, под которой понимается определение оптимальной настройки (обучения) синаптических весов искусственной нейронной сети по выбранному критерию, в статье применен алгоритм обучения нейронной сети, сформированный на основе метода Нелдера—Мида. **РЕЗУЛЬТАТЫ**. В ходе исследования выявлено, что при двоично-разрядном кодировании информации модель обобщенного нейронного элемента обеспечивает наименьшие значения интегрального квадратичного критерия. **ВЫВОДЫ**. Спайковая исскуственная нейронная сеть может применяться в системах регулирования с широтно-импульсной модуляцией. **Ключевые слова**: искусственная нейронная сеть, спайковый нейрон, широтно-импульсная модуляция, метод Нелдера—Мида, интегральный квадратичный критерий, задача параметрической оптимизации.

Информация о статье. Дата поступления 15 июня 2018 г.; дата принятия к печати 23 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Игумнов И.В. Исследование шим-элемента со спайковой нейронной сетью // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 63–71. DOI: 10.21285/1814-3520-2018-8-63-71

STUDY OF A PWM-ELEMENT WITH A SPIKING NEURAL NETWORK

I.V. Igumnov

Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russian Federation

ABSTRACT. The **PURPOSE** of the study is to show the application possibility of the spike (pulse) model of a neuron in automatic control systems with a pulse-width modulation controller that has an artificial neural network in its composition. **METHODS**. The use of this type regulators makes us solve the problem of parametric optimization that is understood as the determination of the optimal tuning (training) of the synaptic weights of an artificial neural network according to the chosen criterion. Therefore, the neural network training algorithm formed on the basis of the Nelder-Meade method is used in the article. **RESULTS**. The study has shown that the model of a generalized neuron element provides the lowest values of the integral quadratic criterion under the binary coding of information. **CONCLUSIONS**. Spiking neural networks can be used in control systems with pulse-width modulation.

Keywords: artificial neural network, spike neuron, pulse-width modulation (PWM), Nelder— Mead method, integral quadratic criterion, parametric optimization problem

Information about the article. Received June 15, 2018; accepted for publication July 23, 2018; available online August 31, 2018.

For citation. Igumnov I.V. Study of a PWM-element with a spiking neural network. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 63–71. DOI: 10.21285/1814-3520-2018-8-63-71 (in Russian).

¹Игумнов Иннокентий Васильевич, аспирант, e-mail: rtif555@gmail.com Innokentiy V. Igumnov, Postgraduate student, e-mail: rtif555@gmail.com

Введение

В последние годы предметом исследований при синтезе автоматических систем регулирования (АСР) являются искусственные нейронные сети (ИНС) с их известными преимуществами [1–5]. Внимание среди них уделяют ИНС со спайковой (импульсной) моделью нейрона [6–8], ввиду ее повышенной производительности (быстродействие) в обработке информации и помехоустойчивости [8]. Но использование таких ИНС для импульсных АСР исследовано недостаточно. При этом весьма важным для

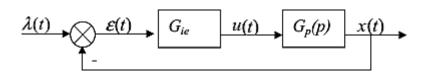
подобных АСР представляется возможность решения задачи параметрической оптимизации в ее, ставшей классической, постановке.

Исходя из вышесказанного, в настоящей работе рассматривается АСР с регулятором, осуществляющим широтно-импульсную модуляцию (ШИМ), который имеет в своем составе ИНС [9] со спайковым (импульсным) нейроном, а также показана возможность решения задачи параметрической оптимизации.

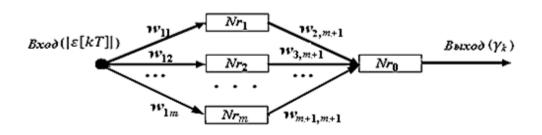
Описание автоматической системы и моделей нейронов

Структурная схема рассматриваемой АСР в достаточно общем виде представлена на рис. 1.

Здесь $G_p(p)$ – оператор объекта регулирования; u(t) – выход ШИМ-элемента; G_{ie} – оператор ШИМ элемента с нейронной сетью; p=d/dt – оператор дифференцирования; $\lambda(t)$ – задающее воздействие; x(t) – регулируемая величина; $\varepsilon(t)$ – ошибка регулирования.


Процессы, протекающие в ACP можно описать в следующем виде:

$$\varepsilon(t) = \lambda(t) - x(t); \tag{1}$$


$$u(t) = G_{ia} \cdot \varepsilon(t); \qquad (2)$$

$$x(t) = G_{p}(p) \cdot u(t). \tag{3}$$

Характеристика нейросетевого ШИМ-элемента (НШИМ) совпадает с ШИМ-элементом [9, 10], за исключением того, что γ_k — скважность k-го импульса вычисляется с помощью нейронной сети [9], изображенной на рис. 2. Подобная ИНС выбрана ввиду ее изученности применительно к исследуемой АСР [9, 10].

Puc. 1. Структурная схема Fig. 1. Block diagram

Puc. 2. Apxumeкmypa нейронной сети Fig. 2. Architecture of a neural network

Здесь Nr_i — нейроны скрытого слоя (i=1,...,m), $w_{11},w_{12},...,w_{1m}$, $w_{2,m+1},w_{3,m+1},...$, $w_{m+1,m+1}$ — здесь и далее весовые коэффициенты, образующие матрицу весовых коэффициентов \mathbf{W} . Данная ИНС вычисляет γ_k , исходя из модуляционной характеристики вида² [9], и на основе которой сформирована ее архитектура:

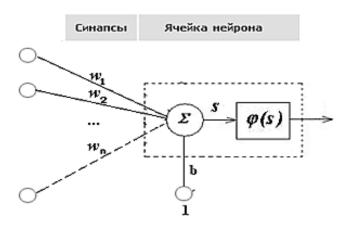
$$\begin{split} \gamma_{k} &= q_{1} \left| \varepsilon[kT] \right|^{1} + q_{2} \left| \varepsilon[kT] \right|^{2} + \\ &+ q_{3} \left| \varepsilon[kT] \right|^{3} + \dots + q_{m} \left| \varepsilon[kT] \right|^{m} = \\ &= \sum_{j=1}^{m} q_{j} \left| \varepsilon[kT] \right|^{j}. \end{split} \tag{4}$$

Стоит отметить, что данная архитектура построена для модели нейрона, основанной на трудах МакКаллока—Питтса, общий вид которой представлен на рис. 3.

Здесь Σ – линейный сумматор, b – свободный член или смещение, s – выход линейного сумматора, $\varphi(s)$ – функция активации нейрона [3].

Теперь опишем спайковую (импульсную) модель нейрона, на которую будет заменен данный нейрон. Посредством анализа литературных источников [11–13] выбрана наиболее распространенная из них спайковая (импульсная) модель, под назва-

нием обобщенного нейронного элемента (ОНЭ) (рис. 4).


Модель ОНЭ задается при помощи следующего набора параметров [12,13]:

P — пороговое значение; r — равновесное значение (по аналогии — это свободный член или смещение); α — скоростной параметр; T_R — продолжительность периода рефрактерности (невосприимчивости к внешнему воздействию); n — количество входов (синапсов); $w_1, w_2, w_3, ..., w_n$ — синаптические веса; T_m — продолжительность периода синаптического воздействия.

Внутреннее состояние s(t) нейрона в момент времени t описывается следующими функциями: u(t) — функция зависимости величины потенциала от момента времени t; $\sigma(t)$ — мгновенный выходной импульс $(\Delta t \to 0)$ [12].

Функция s(t) принимает одно из следующих выражений [12]:

Функция $\sigma(t)$ равна единице в момент, когда элемент генерирует выходной импульс (спайк). В остальные моменты времени $\sigma(t)=0$.

Puc. 3. Модель нейрона Fig. 3. Model of a neuron

²Куцый Н.Н. Автоматическая параметрическая оптимизация дискретных систем регулирования: дис. ... д-ра техн. наук: 05.13.06. Москва, 1997. 386 с. / Kutsiy N.N. Automatic parametric optimization of discrete control systems: Doctoral dissertation in technical sciences: 05.13.06. Moscow, 1997. 386 р.

Значения входных импульсов $\sigma_1(t)$, $\sigma_2(t)$, $\sigma_3(t)$,..., $\sigma_n(t)$ (n – число входов данного нейрона) зависят от момента времени t. Здесь $\sigma_i(t) = 1$ во все моменты времени t, когда по i-му входу подается импульс. В остальные моменты времени $\sigma_i(t) = 0$ (i = 1, 2, 3, ..., n).

В большинстве источников для упрощения вычисления вводятся вспомогательные функции $\sigma_1^m(t), \sigma_2^m(t), \sigma_3^m(t), ..., \sigma_n^m(t)$, которые равны:

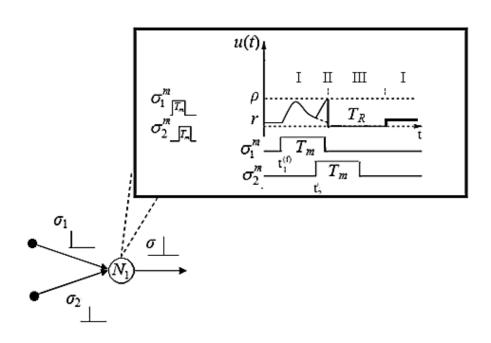
$$\sigma_{i}^{m}(t) = \begin{cases} 1, npu \ t \in [t^{*}; t^{*} + T_{m}], \\ 0 \end{cases}$$
 (8)

где t^* – такое, что одновременно $s(t^*)$ = {восприимчивость} и $\sigma_i(t)$ = 1.

Теперь опишем функционирование ОНЭ (рис. 4). В произвольный момент времени t возможен один из трех вариантов [12]:

I. ОНЭ находится в состоянии восприимчивости сигналов — s(t) = {восприимчивость}, тогда u(t) удовлетворяет дифференциальному уравнению:

$$u' = \alpha(r + h - u), \tag{9}$$


где величина *h* определяется следующим образом:

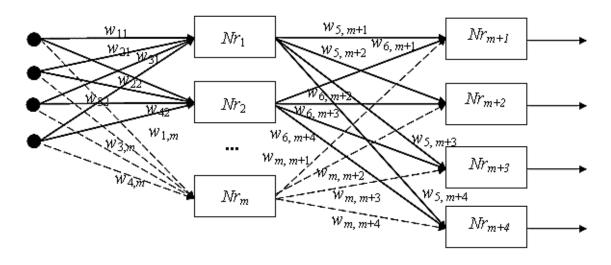
$$h = \sum_{i=1}^{n} w_i \sigma_i^m. \tag{10}$$

II. При $u=\rho$ ОНЭ генерирует импульс $-s(t)=\{$ генерация импульса $\}$, при этом $\sigma(t)=1$. Выходной импульс распространяется по всем выходам данного нейрона. Импульс происходит мгновенно ($\Delta t \to 0$), после чего элемент переходит в состояние рефрактерности.

III. ОНЭ находится в состоянии рефрактерности – s(t) = {рефрактерность}. Тогда u = 0, $\sigma(t)$ = 0. В состоянии рефрактерности элемент не восприимчив к внешнему воздействию. Элемент находится в состоянии рефрактерности в течение промежутка времени T_R с момента генерации импульса, после чего переходит в состояние восприимчивости.

Стоит отметить, что в спайковых (импульсных) моделях нейрона передача информации осуществляется посредством импульсов, поэтому ошибка на ИНС (рис. 2) при использовании ОНЭ поступает в закодированной форме, т.е. в данном случае — последовательности импульсов.

Puc. 4. Модель ОНЭ Fig. 4. Model of a generalized neuron element


Наиболее распространенными способами кодирования для спайковых модулей является широтное (относительное), фазовое и двоичное [14]. Причем при их использовании представленная архитектура не изменится, но оговоримся, что при использовании двоичного кодирования на нейронную сеть поступает целое число, т.е. при $\varepsilon[kT] = 0.5$ вход нейронной сети примет двоичное значение числа 500. Ввиду того, что при использовании двоично-разрядного [14] кодирования на нейронную сеть последовательно подается двоичное значение

разряда числа, архитектура ИНС примет следующий вид (рис. 5).

В качестве оценки работы автоматической системы принят интегральный критерий, общий вид которого:

$$I(\mathbf{W}) = \int_{0}^{\infty} F(\varepsilon(t, \mathbf{W})) dt.$$
 (11)

Здесь $\varepsilon(t, \mathbf{W})$ – ошибка системы при использовании \mathbf{W} матрицы весовых коэффициентов, F – некоторая выпуклая функция.

Puc. 5. Apxumeкmypa ИНС Fig. 5. Architecture of the artificial neural network

Алгоритм оптимизации

Как указывалось ранее, для решения задачи параметрической оптимизации предлагается использовать алгоритм обучения нейронной сети (ОНС), который подробно представлен [10]. Исходя из наибольшей наглядности, кратко покажем особенности этого алгоритма.

Во-первых, формируется набор начальных симплексов, у которых координаты n (n = 2m (см. рис. 2)) точек (в нашем случае количество весовых коэффициентов) подобраны таким образом, чтобы выход нейронной сети отражал реакцию с учетом архитектуры ИНС на значения от отдельного синаптического веса. Исходя из [15] в n+1 точке, значения всех синаптиче-

ских весов приравниваются 0. Также в точках симплекса используется варьирование знака синаптических весов всего множества их возможных значений.

Во-вторых, в каждом симплексе для всех точек вычисляется значение критерия (6); в данном случае обозначается, как l_{ij} , где $i=1,2,\ldots$ номер симплекса, $j=1,2,\ldots$ точка i-го симплекса. Затем определяется \hat{I} — характеристическое число симплекса как $\hat{I}=\min(l_{ij})$. Далее рассматриваются только те симплексы, для которых $\frac{\hat{I}}{\min(\hat{I})} \leq \mu$ (где μ >1).

В-третьих, с отобранными симплексами выполняются основные операции метода Нелдера – Мида [15]: Сортировка, Отражение, Растяжение, Сжатие, Усечение, проверка выполнения критерия окончания поиска.

После выполнения критерия окончания поиска точка с наименьшим значением

критерия / будет считаться решением по данному симплексу.

Затем происходит сравнение результатов работы алгоритма, полученных точек с наименьшими критериями *I*, по каждому симплексу и выбирается точка с наименьшим значением критерия *I*, а также ее значения синаптических весов и считаются оптимальными.

Результаты исследования

Для иллюстрации вышеизложенного конкретизируем элементы автоматической системы (рис. 1). Оператор объекта регулирования G_{06} с запаздыванием записан в виде

$$G_{o\delta}(p) = \frac{k_{uu}}{p} \frac{k_{o\delta}}{(T_1 p + 1)(T_2 p + 1)} e^{-\tau p},$$
 (12)

где k_{06} — коэффициент передачи объекта, k_{06} — коэффициент передачи исполнительного механизма; T_{061} , T_{062} — постоянные времени объекта, τ_{06} — время запаздывания.

Элемент ШИМ имеет в своем составе нейронную сеть (рис. 2, 5), состоящую из трех нейронов в скрытом слое и одного в выходном.

Модель ОНЭ имеет следующие значения параметров, найденных с помощью эвристического метода:

$$P = 1$$
; $\alpha = 1$; $T_R = 0.03$; $T_m = 0.02$.

Критерий оптимизации представлен в достаточно распространенном виде:

$$I(W) = \int_{0}^{L} \varepsilon^{2}(t, W)dt, \qquad (13)$$

где L – интервал интегрирования.

Исследования проведены в достаточно большом диапазоне параметров объекта. В качестве иллюстрации приведены результаты исследования при

 $k_{\text{им}}=1;\ k_{\text{об}}=1;\ T_{\text{об1}}=10;\ T_{\text{об2}}=40;\ \tau_{\text{об}}=50$ и периоде повторения импульсов T=25, задающем воздействии $\lambda(t)=1(t)\cdot 0,5$ и ограничениях, при которых значение скважности γ_k .

Параметры алгоритма ОНС: коэффициент отражения $\alpha=1$, коэффициент растяжения $\gamma=2$, коэффициент сжатия $\beta=0.5$ [15].

По итогам работы алгоритма ОНС получены значения синаптических весов, с соответствующими им переходными процессами (рис. 6), где под цифрой 1 — при использовании фазового либо широтного (относительного) кодирования; под цифрой 2 — при двоичном кодировании (представление); под цифрой 3 — при двоично-разрядном кодировании (представление).

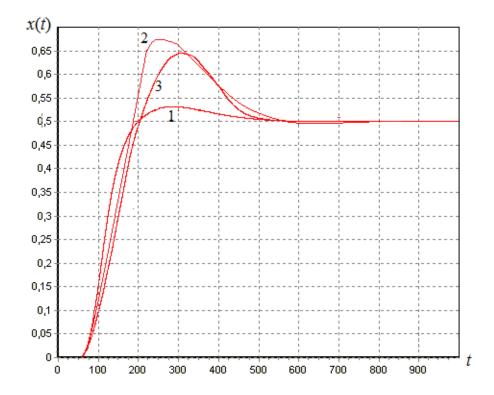
В табл. 1 приведены значения критерия при использовании разных типов кодирования.

Таблица 1

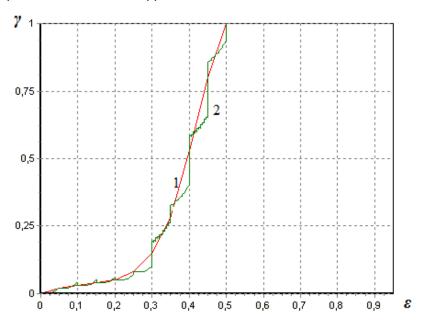
Значения интегрального критерия

Table 1

Integral criterion values


Тип кодирования	I
Фазовое	30,52
Широтное (относительное)	30,52
Двоичное	29,54
Двоично-разрядное	29,24
Нейрон МакКаллока-Питтса	
ИНС (рис. 2) с сигмоидальной функцией активации	27,05

Puc. 6. Переходные процессы Fig. 6. Transient processes


На рис. 7, с целью наглядного представления отличия результатов работы ОНЭ и модели, построенной на основе трудов МакКаллока–Питтса, показаны переход-

ные процессы, где под цифрой 1 — нейронная сеть с сигмоидальной (рациональной) функцией активации [1–3], под цифрой 2, 3 — указано выше.

Puc. 7. Переходные процессы Fig. 7. Transient processes

На рис. 8 приведены псевдомодуляционные характеристики, где под цифрами 1 сигмоидальной (рациональной) функции активации и 2-спайковая модель нейрона.

Puc. 8. Псевдомодуляционная характеристика Fig. 8. Pseudo-modulation characteristic

Заключение

Исходя из вышесказанного, можно сделать вывод, что алгоритм ОНС успешно решает задачу обучения нейронной сети для ШИМ-систем со спайковой моделью нейрона с достаточной для практики точностью, и тем самым может рекомендоваться для включения в алгоритмическое обеспе-

чение промышленных автоматических систем. Спайковая ИНС в данном случае аппроксимирует псевдомодуляционную характеристику, получаемую с помощью классического нейрона, и уступает ИНС с ним по причине существования времени релаксации на выходном нейроне.

Библиографический список

- 1. Сабанин В.Р., Смирнов Н.И., Репин А.И. Автоматический системы регулирования на основе нейросетевых технологий // Вестник Московского энергетического института: сб. статей. 2005. С. 10–18.
- 2. Шаровин И.М., Смирнов Н.И., Репин А.И. Применение искусственных нейронных сетей для адаптации САР в процессе их эксплуатации // Промышленные АСУ и контроллеры. 2012. № 4. С. 27–32.
- 3. Терехов В.А., Ефимов Д.В., Тюкин И.Ю. Нейросетевые системы управления. М.: Изд-во ИПРЖР, 2002. 480 с.
- 4. Воробьев Ю.Б., Кудинов П., Ельцов М., Кёоп К., Чыонг Ван К.Н. Применение информационных технологий (генетические алгоритмы, нейронные сети, параллельные вычисления) в анализе безопасности АЭС // Труды Института системного программирования РАН. 2014. Т. 26. № 2. С. 137–158.
- 5. Kucherenko Ye. I., Trokhimchuk S.N., Driuk O.D. Knowledge-oriented technologies in highly automated

- production // Радіоелектроніка, інформатика, управління. 2014. No. 2. C. 79–84. DOI: 10.15588/1607-3274-2014-2-12
- 6. Ponulak F., Kasiński A. Introduction to spiking neural networks: Information processing, learning and applications // Acta Neurobiologiae Experimentalis. 2011. No. 71. C. 409–433.
- 7. Бендерская Е.Н., Никитин К.В. Возможности использования импульсных рекуррентных нейронных сетей для анализа электрокардиограмм // Информационно-управляющие системы. 2015. № 1. С. 85–91. DOI: 10.15217/issn1684-8853.2015.1.85
- 8. Колесницкий О.К., Бокоцей И.В., Яремчук С.С. Аппаратная реализация элементов импульсных нейронных сетей с использованием биспин-приборов // Нейроинформатика. 2010. № 1. С. 121–131.
- 9. Игумнов И.В., Куцый Н.Н. Формирование ШИМэлемента с использованием искусственных нейронных сетей // Вестник Иркутского государственного технического университета. 2014. № 6 (89). С. 31–35.

- 10. Игумнов И.В., Куцый Н.Н. Нейросетевая реализация и настройка ШИМ-элементов в автоматических системах // Вестник Новосибирского государственного технического университета. 2015. № 3 (60). С. 23–32.
- 11. Gerstner W., Kistler W.M. Spiking Neuron Models Single Neurons, Populations, Plasticity. Cambridge University Press, 2002, 504 c.
- 12. Ануфренко С.Е., Коновалов Е.В. Нейронные модели на основе импульсного нейрона. Ярославлы: Ярославский гос. ун-т им. П.Г. Демидова, 2012. 80 с.
- 13. Копылов В.Д., Дунаева О.А., Мячин М.Л. Импульсный нейрон и нейронный клеточный автомат асимптотически эквивалентны // Моделирование и анализ информационных систем. 2014. Т. 21. № 3. С. 62–80. 14. Leonard M. Reyneri A performance analysis of pulse stream neural and fuzzy computing systems // IEEE transactions on circuits and systems analog and digital signal processing, T. 42. №. 10.1995. C. 642–660.
- 15. Химмелъблау Д. Прикладное нелинейное программирование. М.: МИР, 1975. 536 с.

References

- 1. Sabanin V.R., Smirnov N.I., Repin A.I. Automatic control system based on neural network technologies. Vestnik Moskovskogo jenergeticheskogo instituta [MPEI Vestnik], 2005, no. 3, pp. 10–18. (In Russian).
- 2. Sharovin I.M., Smirnov N.I., Repin A.I. Application of artificial neuron networks for adapting automatic control systems during their operation. Promyshlennye ASU i kontrollery [Industrial Automated Control Systems and Controllers], 2012, no. 4, pp. 27–32. (In Russian).
- 3. Terehov V.A., Efimov D.V., Tjukin I.Ju. Nejrosetevye sistemy upravlenija [Neural network control systems]. Moscow: IPRZhR Publ., 2002, 480 p. (In Russian).
- 4. Vorobev Yu.B., Kudinov P., Elcov M., Kyoop K., CHyong Van K.N. Application of information technologies (genetic algorithms, neural networks, parallel computing) in safety analysis of nuclear power plants. Trudy Instituta sistemnogo programmirovaniya RAN [Proceedings of the Institute of System Programming of the RAS], 2014, vol. 26, no. 2, pp. 137–158. (In Russian).
- 5. Kucherenko Ye.I., Trokhimchuk S.N., Driuk O.D. Knowledge-oriented technologies in highly automated production. Radioelektronika, informatika, upravlinnya [Radio electronics, computer science, management], 2014, no. 2. pp. 79–84. DOI: 10.15588/1607-3274-2014-2-12
- 6. Ponulak F., Kasiński A. Introduction to spiking neural networks: Information processing, learning and applications. Acta Neurobiologiae Experimentalis. 2011, no. 71, pp. 409–433.
- 7. Benderskaya E.N., Nikitin K.V. Using spiking recurrent neural networks for ECG analysis. Informacionno-upravlyayushchie sistemy [Information and Control Systems], 2015, no. 1. pp. 85–91. DOI: 10.15217 / issn1684-8853.2015.1.85. (In Russian).

Критерии авторства

Игумнов И.В. провел исследование, подготовил рукопись и несет ответственность за плагиат.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

- 8. Kolesnickij O.K., Bokocej I.V., Yaremchuk S.S. Hardware implementation of pulsed neural network elements using bispin devices. Nejroinformatika [Neuroinformatics], 2010, no. 1, pp. 121–131. (In Russian).
- 9. Igumnov I.V., Kuciy N.N. PWM element formation using artificial neural networks. Vestnik Irkutskogo Gosudarstvennogo Tehnicheskogo Universiteta [Proceedings of Irkutsk State Technical University], 2014, no. 6 (89), pp. 31–35. (In Russian).
- 10. Igumnov I. V., Kucyi N.N. Neural network implementation and adjustment of PWM elements in automatic systems. Vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta [Science Bulletin of the NSTU], 2015, no. 3(60), pp. 23–31. (In Russian).
- 11. Gerstner W., Kistler W. M. Spiking Neuron Models Single Neurons, Populations, Plasticity. Cambridge University Press, 2002, 504 p.
- 12. Anufrenko S.E., Konovalov E.V. Nejronnye modeli na osnove impul'snogo nejrona [Pulsed neuron-based neural models]. Yaroslavl: Yaroslavl State University named after Demidov Publ., 2012, 80 p. (In Russian).
- 13. Kopylov V.D., Dunaeva O.A., Myachin M.L. Impulse neuron and cellular neural automaton are asymptotically equivalent. Model. i analiz inform. Sistem [Model and Analysis of Information Systems], 2014, vol. 21, no. 3, pp. 62–80. (In Russian).
- 14. Leonard M. Reyneri A performance analysis of pulse stream neural and fuzzy computing systems // IEEE transactions on circuits and systems analog and digital signal processing, vol. 42, no. 10, 1995, pp. 642–660.
- 15. Himmelblau D. Prikladnoe nelinejnoe programmirovanie [Applied nonlinear programming]. Moscow: MIR Publ., 1975, 536 p.

Authorship criteria

Igumnov I. V. has conducted the study, prepared the manuscript for publication and bears the responsibility for plagiarism.

Conflict of interests

The author declares that there is no conflict of interests regarding the publication of this article.

Оригинальная статья / Original article УДК 004.94

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-72-82

МЕТОД СОПРЯЖЕННЫХ ГРАДИЕНТОВ В СИСТЕМЕ АВТОМАТИЧЕСКОГО ПОСТРОЕНИЯ ПРОГНОЗИРУЮЩИХ МОДЕЛЕЙ

© И.А. Серышева¹, М.А. Чекан², Л.В. Бархатова³, Е.А. Крупенев⁴

Иркутский национальный исследовательский технический университет, 664074, Российская Федерация, г. Иркутск, ул. Лермонтова, 83.

РЕЗЮМЕ. ЦЕЛЬ. Работа направлена на повышение точности воспроизведения единиц времени и частоты за счет использования прогнозирующих моделей авторегрессии-скользящего среднего. Существующая в настоящее время методика построения моделей авторегрессии-скользящего среднего основана на интерактивных процедурах, что требует участия высококвалифицированных специалистов и препятствует внедрению алгоритмов оптимальной фильтрации в практическую деятельность служб времени. МЕТОДЫ. Использованы методы анализа временных рядов, построения моделей авторегрессии-скользящего среднего, метод сопряженных градиентов. РЕ-ЗУЛЬТАТЫ. Предложен подход, позволяющий полностью формализовать процедуру построения моделей. Разработан программный модуль, реализующий автоматическое построение прогнозирующих моделей, описывающих процессы изменения частоты водородных стандартов. Проведена его экспериментальная проверка и приведены результаты работы, подтверждающие адекватность получаемых моделей. ВЫВОДЫ. Формализованная методика построения моделей авторегрессии-скользящего среднего, предложенная авторами, позволит решить проблему полной автоматизации процесса построения моделей временных рядов по эмпирическим данным и снизить погрешность воспроизведения единиц времени и частоты групповыми эталонами до 30%. В результате выполненных работ имеются все основания полагать, что разработанный программный модуль может служить основой для создания типового программного обеспечения подсистемы внутренних сличений эталонов времени и частоты с целью введения последующего в режим опытной эксплуатации.

Ключевые слова: прогнозирующие модели временных рядов, поиск безусловного экстремума, метод сопряженных градиентов, адекватность прогнозирующих моделей, групповые эталоны времени и частоты.

Информация о статье. Дата поступления 18 июня 2018 г.; дата принятия к печати 19 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Серышева И.А., Чекан М.А., Бархатова Л.В., Крупенев Е.А. Метод сопряженных градиентов в системе автоматического построения динамических стохастических моделей // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 72–82. DOI: 10.21285/1814-3520-2018-8-72-82

CONJUGATE GRADIENT METHOD IN THE SYSTEM OF PREDICTING MODEL AUTOMATIC CREATION

I.A. Serysheva, M.A. Chekan, L.V. Barkhatova, E.A. Krupenev

Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russian Federation

ABSTRACT. PURPOSE. The paper deals with the increase in reproduction accuracy of time and frequency units through the use of predictive autoregressive-moving average models (ARMA)). The methodology of ARMA model creation existing now is based on interactive procedures. This requires highly qualified specialists and prevents the algorithms of optimum filtration from the introduction in the practical activities of time services. **METHODS.** The study employs the methods of

¹Серышева Ирина Анатольевна, старший преподаватель кафедры автоматизированных систем, e-mail: sia cyber@mail.ru

Irina A. Serysheva, Senior Lecturer of the Department of Automated Systems, e-mail: sia cyber@mail.ru

²Чекан Михаил Андреевич, студент, e-mail: chekoopa@mail.ru

Mikhail A. Chekan, Student, e-mail: chekoopa@mail.ru

³Бархатова Людмила Викторовна, студентка, e-mail: lyuda_barhatova@mail.ru

Lyudmila V. Barkhatova, Student, e-mail: lyuda_barhatova@mail.ru

⁴Крупенев Егор Анатольевич, студент, e-mail: egorkrupenev@yandex.ru

Egor A. Krupenev, Student, e-mail: egorkrupenev@yandex.ru

time series analysis, ARMA model construction and the conjugate gradients method. **RESULTS**. An approach allowing a complete formalization of the procedure of model construction is introduced. A program module implementing the automatic construction of the predicting models that describe the processes of hydrogen standards frequency variation is developed. It is tested experimentally and the results of the work confirming the adequacy of the obtained models are presented. **CONCLUSIONS**. The formalized methodology of ARMA models construction proposed by the authors will allow to solve the problem of full automation of time series model construction by empirical data and to lower the reproduction error of time and frequency units by group standards up to 30%. The conducted study provides all the reasons to suppose that the developed software module can serve as a basis for creating a standard software for the subsystem of internal comparisons of time and frequency standards in order to be introduced into the experimental operation mode.

Keywords: predictive models of time series, search for unconditional extremum, method of conjugate gradients, adequacy of predicting models, group time and frequency standards

Information about the article. Received June 18, 2018; accepted for publication July 19, 2018; available online August 31, 2018.

For citation. Serysheva I.A., Chekan M.A., Barhatova L.V., Krupenev E.A. Conjugate gradient method in the system of predicting model automatic creation. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 72–82. DOI: 10.21285/1814-3520-2018-8-72-82 (In Russian).

Введение

Групповые эталоны единиц времени и частоты (ВиЧ) предназначены для воспроизведения, хранения и передачи единиц времени и частоты в соответствии с их определением в системе СИ, а также для формирования, хранения и передачи координированных шкал времени. Точность воспроизведения и хранения единиц ВиЧ определяется как аппаратурной базой, так и методами обработки измерительной информации, получаемой в процессе ведения эталонов. В настоящее время существует большое количество алгоритмов для вычисления шкал времени, характеризующих состояние эталона. Наиболее часто используемые методы расчета являются различными модификациями базовых уравнений шкалы времени [1-4], либо используют фильтрацию Калмана [4-9].

Алгоритмы, основанные на фильтре Калмана, в том числе, и субоптимальной фильтрации, позволяют достаточно точно оценить состояние группового эталона, и, как правило, дают лучшие результаты по сравнению с методами, основанными на модификации базового уравнения шкалы времени. Однако для их работы требуется априорная информация о параметрах стандартов, входящих в групповой эталон ВиЧ.

В частности, предлагаемый в [8, 9] алгоритм субоптимальной фильтрации, позволяющий находить оценку вектора состоя-

ния группового эталона единиц ВиЧ по результатам «внутренних сличений», опирается на использование прогнозирующих моделей, описывающих процессы изменения частоты водородных стандартов, составляющих техническую основу отечественных эталонов единиц ВиЧ. Процедура построения таких моделей по эмпирическим данным реализована в ряде пакетов прикладных программ, в частности в «ППП STATIS-TICA» [10]. Одним из основных недостатков упомянутой методики [11] является использование интерактивной процедуры идентификации структуры процессов авторегрессии-скользящего среднего по виду автокорреляционной и частной автокорреляционной функции, требующей участия квалифицированного специалиста в области анализа временных рядов, и не поддающейся полной формализации.

Альтернативный, предлагаемый в [12], подход к построению прогнозирующих моделей заключается в использовании метода простого перебора всех возможных структур моделей с последующей подгонкой параметров авторегрессии и скользящего среднего к рядам оценок $y_{k,i}$ процессов изменения частоты каждого из стандартов с номером $i(i=1,\ldots,n)$, где n — число водородных генераторов (стандартов частоты), входящих в состав группового эталона;

 $k=1,\ldots,N$ - номер такта обработки данных; N — длина временного ряда. В работах [8, 9] показано, что для водородных генераторов, эксплуатируемых в настоящее время в подразделениях Государственной службы времени, частоты и определения параметров вращения Земли, порядки авторегрессии (AP) – p и скользящего среднего (CC) – q в моделях, описывающих процессы изменения частоты, не превышают трех и двух соответственно. Это обстоятельство позволяет реализовать метод простого перебора всех возможных структур прогнозирующих моделей (всего таких структур одиннадцать, начиная с p = 1, q = 0 и заканчивая p=3,q=2). Однако применение метода простого перебора требует многократного решения оптимизационной задачи, что потребовало искать способы повышения эффективности применяемых методов оптимизации.

В работе [12] было показано, что задачу оптимизации при подгонке параметров прогнозирующих моделей можно рассматривать как задачу поиска безусловного экстремума функции нескольких переменных.

Следующим шагом в данном направлении является применение алгоритмов оптимизации, обладающих высокой скоростью сходимости.

Самой высокой сходимостью обладают алгоритмы метода Ньютона. Однако они требуют вычисления матрицы Гессе (матрицы вторых производных), что существенно снижает реальное их быстродействие. Из алгоритмов первого порядка, имеющих быстродействие, близкое к быстродействию метода Ньютона, и не требующих вычисления матрицы Гессе, предлагается использовать алгоритм, реализующий метод сопряженных градиентов [13, 14].

Применение метода сопряженных градиентов для подгонки параметров моделей

Предлагаемый для решения оптимизационных задач подгонки параметров моделей метод сопряженных градиентов подробно описан во многих источниках [13, 14]. Приведем краткое описание алгоритма построения прогнозирующих моделей методом перебора с использованием метода сопряженных градиентов. Поскольку модели строятся отдельно для каждого из временных рядов, описывающих процессы изменения частоты в водородных генераторах, индекс *i* (номер генератора) в дальнейшем изложении опущен.

Перебор производится по моделям авторегрессии-скользящего среднего (APCC) (p,q) с порядком авторегрессии p=0(1)3 и скользящего среднего q=0(1)2 (очевидно, модель (0,0) не рассматривается). Для каждой модели производится подбор параметров по критерию минимальной остаточной дисперсии

$$S = f(\beta) = \frac{\sum_{k=1}^{N} (y_k - \hat{y}_k(1))^2}{N - (p+q)}, (1)$$

где $\hat{y}_k(1)$ – прогноз значения временного ряда, вычисленный на предыдущем такте, основанный на соответствующей модели APCC:

$$\hat{\mathbf{y}}(1) = \mathbf{\beta}^T \cdot \mathbf{X} ,$$

где $\mathbf{\beta}^T = \left[\phi_1, \phi_2, \ldots, \phi_p, \theta_1, \theta_2, \ldots, \theta_q\right]$ – вектор параметров модели АРСС *i*-го элемента (генератора);

$$\mathbf{X}^T = \begin{bmatrix} y_{t-1}, y_{t-2}, ..., y_{t-p}, -a_{t-1}, -a_{t-2}, ..., -a_{t-q} \end{bmatrix}$$
 – вектор состояния прогнозируемого процесса для i -го элемента; φ , θ – коэффициенты AP и CC; $a = y_k - \hat{y}_k(1)$ – ошибка k -го прогноза.

Подбор параметров осуществляется методом сопряженных градиентов Флетчера и Ривса для целевой функции (1) (p+q) переменных.

Начальный этап. Задаются $\varepsilon = 10^{-5}$ – для остановки алгоритма, начальная точка $\mathbf{\beta}_1 = \begin{pmatrix} 0, \dots, 0 \end{pmatrix}$ и начальные значения: $\mathbf{y}_1 = \mathbf{\beta}_1; \ \mathbf{d}_1 = -\nabla f\left(\mathbf{\beta}_1\right); \ l=j=1$ – после

этого начинается основной этап алгоритма.

Основной этап. Шаг 1. Проверяется базовый критерий останова, если $\left\| \nabla f \left(\mathbf{\beta}_{_{\! 1}} \right) \right\| < arepsilon$, то остановится. Частные производные вычисляются числено, как отношение приращения функции к очень малому приращению соответствующего аргумента ($\Delta \beta = 10^{-7}$). В случае несоблюдения базового критерия останова вычисляется λ_i как оптимальное решение задачи минимизации $f(\mathbf{y}_i + \lambda \mathbf{d}_i)$, функции $\mathbf{y}_{i+1} = \mathbf{y}_i + \lambda_i \mathbf{d}_i$. Одномерная оптимизация, ввиду неограниченности интервала неопределенности справа выполняется методом прямого перебора с переменным шагом (начальное значение шага равно 4).

Если j < n то переходим к шагу 2, в противном случае – к шагу 3.

Шаг 2. Задаем
$$\mathbf{d}_1 = -\nabla f\left(\mathbf{y}_{j+1}\right) + \alpha_j \mathbf{d}_j$$
,

где
$$\alpha_j = \frac{\left\| \nabla f\left(\mathbf{y}_{j+1}\right) \right\|^2}{\left\| \nabla f\left(\mathbf{y}_{j}\right) \right\|^2}$$
 — отношение квадра-

тов норм градиента на текущем и предыдущем шагах. Заменяем j на j+1 и переходим к шагу 1.

Шаг 3. Задаем
$$y_1 = \beta_{l+1} = y_{n+1}; d_1 = -\nabla f(y_1); j=1; l=l+1.$$
 Производится проверка дополнительного критерия останова $\|\beta_{l+1} - \beta_l\| \le 10^{-7}$ (произошло ли изменение точки экстремума). Если дополнительный критерий останова не удовлетворен, переходим к шагу 1.

По завершении подбора параметров для каждой модели исследуемого временного ряда производится сортировка полученного спектра моделей по возрастанию остаточной дисперсии и их группировка по критерию Фишера.

Моделирование процесса автоматического построения моделей

Предлагаемый выше алгоритм был реализован на языке Python 3.6. При отработке формализованной методики построения прогнозирующих моделей широко использовались методы статистического моделирования. В частности, временной ряд y_k формировался путем пропускания белого шума $a_{\scriptscriptstyle k}$ с нулевым математическим ожиданием и средним квадратическим отклонением $\sigma_{\scriptscriptstyle k}$ через формирующий фильтр, представляющий собой динамическую стохастическую модель (уравнение АРСС). Вполне естественным является желание сопоставить параметры прогнозирующей модели, построенной по имитируемым данным, с параметрами исходной модели. Такой подход может быть использован на стадии отработки методики и может являться первым шагом в процедуре контроля адекватности моделей. Этот подход был использован в процессе выполнения работы и показал в целом хорошие результаты.

С этой целью были сгенерированы временные ряды, соответствующие трем классам процессов:

- процесс скользящего среднего второго порядка (q=2);
- процесс авторегрессии третьего порядка (p=3);
- смешанный процесс авторегрессии-скользящего среднего (p=1, q=1) .

Начальные значения временного ряда для моделей APCC полагались равными 0,5. Начальные значения ошибок прогнозов a_0 полагались равными нулю. Длина временных рядов — 1000 точек.

Процессы подгонки параметров АР и СС (коэффициенты ϕ_1 , ϕ_2 , ϕ_3 и θ_1 , θ_2 как функции от номера итерации \emph{j}) приведены на рис. 1. Истинные значения коэффициентов, т.е. значения, при которых генерировались временные ряды, равнялись, соответственно: а) АРСС (0, 2) при $\theta_1=0.3$, $\theta_2=-0.1$; b) АРСС (1, 1) при $\phi_1=0.5$, $\theta_1=0.2$; c) АРСС (3, 0) при $\phi_1=0.5$, $\phi_2=0.3$, $\phi_2=-0.2$.

Результаты экспериментов показывают, что за 2–4 такта находятся оптимальные значения параметров моделей,

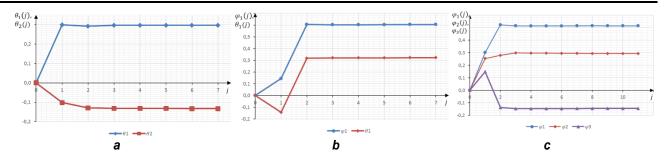


Рис. 1. Процесс подгонки параметров методом сопряженных градиентов: а – модель СС второго порядка; b – модель АРСС (1, 1); с – модель АР третьего порядка

Fig. 1. Process of parameter adjustment by the conjugate gradient method: a - moving average model of the second order MA(2); b - ARMA(1, 1); c - autoregression model of the third order AR(3)

что согласуется с общепринятыми положениями о скорости сходимости метода сопряженных градиентов [13, 14].

При генерации временных рядов на основании моделей и последующего построения моделей способом перебора всех возможных структур в диапазоне $p \le 3$, $q \le 2$ были получены различные модели (по одиннадцать моделей для каждого временного ряда). Результаты работы программы автоматического построения моделей приведены в табл. 1, где указаны структура и параметры базовой модели, а также список прогнозирующих моделей с соответствующими показателями и оценками их параметров. Полученный спектр моделей, соответствующий каждой из базовых моделей, упорядочен по возрастанию значений остаточной дисперсии.

Как видно из табл. 1, параметры моделей, полученные методом простого перебора, со структурой, соответствующей структуре моделей, на основе которых генерировались временные ряды, практически совпадают. Например, полученная модель модель СС второго порядка с коэффициентами [0.2973, -0.1332] - совпадает с исходной моделью СС [0.3, -0.1]. Необходимо все же иметь ввиду, что одному и тому же временному ряду могут соответствовать различные динамические стохастические модели. Особенно, если временные ряды являются реализациями смешанных процессов (т.е. процессов АРСС). Поэтому при моделировании процессов обработки данных можно столкнуться с ситуацией, когда временные ряды генерировались на основе одной модели (т.е. при одних значениях коэффициентов АРСС), а в процессе автоматического построения моделей получены оценки этих параметров, несколько отличающиеся от исходных. По существу, никакого противоречия в такой ситуации не существует, так как такие модели являются равнозначными с точки зрения их прогнозирующей способности (параметры этих моделей лежат на одной и той же линии уровня, т.е. имеют одну и ту же сумму квадратов ошибок прогнозов [11]). Попадание в ту или иную точку линий равного уровня зависит от выбора начальных значений вектора параметров (β_0). В приведенных экспериментах процесс начинался из нулевой точки, поскольку она относится к области допустимых значений, то есть удовлетворяет требованиям стационарности и обратимости моделей [11].

Таким образом, после формирования временного ряда на основе «базовой» модели, построении моделей и упорядочивании полученных моделей по критерию возрастания остаточной дисперсии оказывается, что наилучшей следует считать модель другой структуры. Как видно из результатов, приведенных в табл. 1, расхождение оценок остаточных дисперсий для различных моделей крайне незначительно. Использование F-критерия Фишера показало, что различие ряда моделей АРСС в смысле прогнозирующей способности, характеризуемой остаточной дисперсией, статистически незначимо (гипотеза о равенстве дисперсий при уровне значимости 0.05 не отвергается).

Таблица 1

Результаты автоматического построения моделей

Table 1

Results of automatic modeling

	Results of autom		1	1	
Класс мо-		Оценки оста-	F-	F- критическое	
делей	Оценки коэффициентов	точной диспер-	расчетное		
долои		СИИ	pacientec	KPITITI ICCKOC	
	ARMA(1,1), $N = 1000, y_0 = 0$	$.5, \sigma = 1, [\varphi_1 = 0.5, \theta_1 =$	=0.2]		
(2, 2)	[-0.3737, 0.5496, -0.6555, 0.2532]	0.9300	1.0000	1.1099	
(2.2)	[-0.3013, 0.5848, -0.0262, -0.5844,	0.9309	1.0010	1.1099	
(3, 2)	0.3120]	0.9309	1.0010	1.1033	
(2, 0)	[0.2803, 0.1152]	0.9325	1.0027	1.1099	
(1, 1)	[0.6075, 0.3253]	0.9328	1.0030	1.1099	
(2, 1)	[0.4308, 0.0671, 0.1524]	0.9333	1.0035	1.1099	
(1, 2)	[0.5552, 0.2766, -0.0293]	0.9334	1.0036	1.1099	
(3, 0)	[0.2791, 0.1124, 0.0101]	0.9334	1.0036	1.1099	
(3, 1)	[0.6374, 0.0102, -0.0256, 0.3591]	0.9341	1.0045	1.1099	
(0, 2)	[-0.2759, -0.1592]	0.9407	1.0116	1.1099	
(1, 0)	[0.3168]	0.9441	1.0152	1.1098	
(0, 1)	[-0.2487]	0.9678	1.0406	1.1098	
	ARMA(3,0), $N = 1000, y_0 = 0.5, \sigma = 0.5$	$=1, [\varphi_1=0.5, \varphi_2=0.3]$	$, \varphi_2 = -0.2$		
(3, 0)	[0.5150, 0.2939, -0.1456]	1.0034	1.0000	1.1099	
(2, 2)	[0.3048, 0.2398, -0.2085, -0.1667]	1.0042	1.0003	1.1099	
(3, 1)	[0.5860, 0.2597, -0.1617, 0.0725]	1.0048	1.0008	1.1099	
(2, 2)	[0.4222, 0.2271, -0.0557, -0.0911, -	4.0050	1 0012	1 1000	
(3, 2)	0.1206]	1.0052	1.0012	1.1099	
(1, 2)	[0.5979, 0.0802, -0.2425]	1.0065	1.0025	1.1099	
(2, 1)	[0.1265, 0.4522, -0.3723]	1.0109	1.0069	1.1099	
(2, 0)	[0.4824, 0.2237]	1.0247	1.0206	1.1098	
(1, 1)	[0.7648, 0.2318]	1.0432	1.0390	1.1098	
(0, 2)	[-0.4794, -0.4320]	1.0753	1.0711	1.1098	
(1, 0)	[0.6214]	1.0776	1.0733	1.1098	
(0, 1)	[-0.4035]	1.3368	1.3315	1.1098	
	ARMA(0,2), $N = 1000, y_0 = 0.$	$5, \sigma = 1, [\theta_1 = 0.3, \theta_2 =$	-0.1]		
(2.1)	[-0.8726, -0.13496, 0.08286, -	1.049	1.0000	1 1000	
(3, 1)	0.58046]	1.049	1.0000	1.1099	
(2.2)	[-0.8196, -0.0750, 0.0973, -0.5271,	1.050	1 0010	1 1000	
(3, 2)	0.0439]	1.050	1.0010	1.1099	
(3, 0)	[-0.2971, 0.0359, 0.0767]	1.0507	1.0016	1.1099	
(0, 2)	[0.2973, -0.1332]	1.0515	1.0024	1.1099	
(2, 2)	[-0.1978, -0.1595, 0.0984, -0.2283]	1.0523	1.0031	1.1099	
(1, 2)	[0.0248, 0.3214, -0.1396]	1.0525	1.0034	1.1099	
(1, 0)	[-0.3000]	1.0550	1.0057	1.1098	
(2, 1)	[0.3959, 0.2351, 0.6883]	1.0554	1.0061	1.1099	
(2, 0)	[-0.2960, 0.0132]	1.0558	1.0065	1.1099	
(1, 1)	[-0.3263, -0.0288]	1.0559	1.0066	1.1099	
(0, 1)	[0.2633]	1.0675	1.0177	1.1098	

Что подтверждает вывод: одному и тому же эмпирическому временному ряду может соответствовать группа математических моделей, эквивалентных с точки зрения их прогнозирующей способности. В случае если для некоторой группы моделей остаточные дисперсии отличаются незна-

чимо, предпочтение отдается наиболее простой модели. К простейшим моделям относятся модели АР и СС, имеющие минимальный порядок, из которых предпочтительнее модели АР [15].

Исходя из вышеизложенного, для всех рядов можно использовать модель авторегрессии первого порядка.

Проверка адекватности полученных моделей

Заключительной процедурой при построении прогнозирующих моделей является диагностическая проверка адекватности. Практически все подходы, связанные с контролем адекватности прогнозирующих моделей, основаны на анализе временных рядов, представляющих собой ошибки прогнозов. При этом к рядам остаточных членов предъявляются следующие требования [10, 11, 16, 17]:

- ошибки прогнозов должны подчиняться нормальному закону распределения вероятностей с нулевым средним значением;
- остатки (ошибки прогнозов)
 должны быть не коррелированы.

Поскольку при метрологическом анализе данных предполагается, что погрешности измерений подчиняются нормальному распределению, первым шагом при обработке результатов измерений, в соответствии с рекомендациями существующих методик является проверка гипотезы о принадлежности случайной величины нормальному распределению.

Качественные методы проверки этой гипотезы основаны на сравнении статистической функции распределения с теоретической кривой. Для этой же цели применяются оценки моментов высших порядков:

- коэффициента асимметрии;
- коэффициента эксцесса;
- сравнивается логарифм статистической функции распределения с прямой линией.

Для проверки гипотезы о нормальности распределения существует достаточно много количественных тестов, наиболее часто используемыми из которых являются критерии: Пирсона, Колмогорова-Смирнова, Лиллифорс, Шапиро-Уилка [10, 17].

Проверка адекватности полученных прогнозирующих моделей выполнялась с помощью ППП STATISTICA. На рис. 2 представлены автокорреляционная (АКФ) и частная автокорреляционная функция (ЧАКФ) исходного сгенерированного ряда из 1000 точек для модели скользящего среднего второго порядка с параметрами $\theta_1 = 0.3, \;\; \theta_2 = -0.1, \;\;$ средним квадратическим отклонением псевдослучайного шума, равным 1.

Как можно увидеть из визуального анализа автокореллограмм исходного ряда, процесс структурной идентификации во многом носит субъективный характер – как и вся методика Бокса-Дженкинса в целом, поскольку в приведенном примере структура может быть идентифицирована неоднозначно (можно предположить структуры с p = 1; q = 0, либо p = 0; q = 2).

Построение моделей АРСС для исследуемого ряда с помощью ППП STATIS-TICA и сравнение результатов с моделями, полученными с помощью программного модуля построения прогнозирующих моделей методом перебора, доказывает работоспособность предлагаемой методики. Полученные в результате регрессионного анализа в STATISTICA параметры прогнозирующих моделей и оценки остаточных дисперсий абсолютно совпадают с соответствующими характеристиками, полученными в программном модуле, что подтверждает достоверность моделей, полученных с помощью разработанного модуля автоматического построения прогнозирующих моделей. Результаты построения моделей обоими методами приведены в табл. 2.

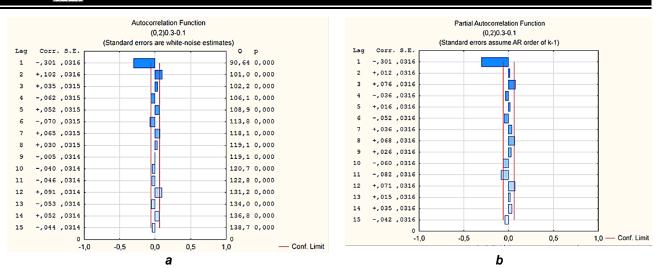


Рис. 2. Выборочные АКФ и ЧАКФ процесса СС 2 порядка Fig. 2. Sample autocorrelation and partial autocorrelation functions of the MA (2) process

Результаты регрессионного анализа в ППП STATISTICA

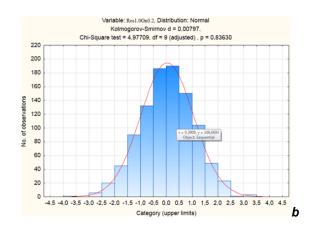
Table 2

Таблица 2

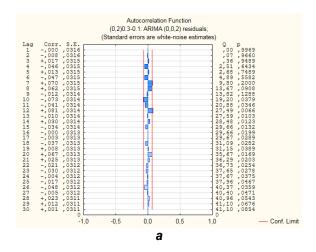
Results of the regression analysis in STATISTICA

Results of the regression unarysis in Granion								
Характеристика	APCC(0, 2) /	APCC(1, 0)						
Результаты автоматического построения моделей								
Полученные коэффициенты АР методом сопряженных	_	$\phi_1 = -0.3000$						
градиентов								
Полученные коэффициенты СС методом сопряженных	$\theta_1 = 0.2973$	1						
градиентов	$\theta_2 = -0.1332$							
Оценка остаточной дисперсии для моделей, полученных	1.0515	1.0550						
методом сопряженных градиентов								
Результаты из ППП STATISTICA								
Полученные коэффициенты АР	-	$\phi_1 = -0.3$						
Полученные коэффициенты СС	$\theta_1 = 0.2973$	1						
	$\theta_2 = -0.1332$							
Оценка остаточной дисперсии	1.0515	1.0550						
Коэффициент асимметрии	-0.0465	-0.0647						
Коэффициент эксцесса	-0.0173	-0.0077						
Стандартная ошибка асимметрии	0.0773	0.0773						
Стандартная ошибка эксцесса	-0.1545	-0.1545						
Значение p-value, по критерию Шапиро-Уилка	0.9091	0.9091						

Проверка гипотезы о нормальном распределении рядов ошибок прогнозов не отвергается ни по одному из выполненных в ППП STATISTICA тестов ни для моделей APCC (1, 0), ни APCC (0, 2). В частности, поскольку коэффициенты асимметрии и эксцесса в обоих случаях близки к нулю, а стандартные ошибки асимметрии и эксцесса не превышают более чем в три раза значения соответствующих показателей, то гипотеза о нормальном распределении остатков прогнозов не отвергается. По


форме гистограмм для рядов ошибок прогнозов, приведенных на рис. З видно, что они хорошо соответствуют нормальной теоретической кривой. Это заключение, основанное на визуальном анализе распределения, имеет и более строгое подтверждение в виде результатов теста X^2 -квадрата, проверяющего нулевую гипотезу о том, что наблюдаемое распределение признака не отличается от теоретически ожидаемого нормального распределения. Поскольку вероятность справедливости этой гипотезы в

обоих случаях оказалась больше 0.05, принимаем, что они действительно верные. Что подтверждается и результатами теста Колмогорова-Смирнова и Шапиро-Уилка (p>0.05).


Приведенные на рис. 4 АКФ рядов ошибок прогнозов моделей АРСС (1, 0) и АРСС (0, 2) подтверждают некоррелированность значений рядов в обоих случаях. Проверка гипотез об адекватности полученных моделей может быть выполнена и с помощью совокупного критерия согласия [11], позволяющего оценить адекватность модели по K первым автокорреляциям $r_k(\hat{a})$ процесса АРСС(p, q), рассматриваемым как единое целое. Если подгоняемая модель удовлетворительна, то $Q = N \sum_{k=1}^K r_k^2(\hat{a})$ распределено приближенно как $\chi^2(K-p-q)$,

где K=N/3, N- длина временного ряда. В ППП STATISTICA были получены значения для первых 30 автокорреляций $r_{k}(\hat{a})$ остаточных ошибок для процессов APCC(0, 2) и APCC(1, 0), подгонявшихся к исходному ряду APCC (0, 2). Сравнение полученных значений совокупного критерия согласия со значениями χ^2 с 29 и 28 степенями свободы, соответственно, при уровне значимости 0.05, показывает, что нет оснований для сомнения в адекватности обеих моделей (40.493<42.557 и 40.493<41.337).

Аналогичным образом проверялись все исходные модели, в том числе и результаты построения прогнозирующих моделей которых приведены в табл. 1. В каждом из случаев параметры моделей (значения коэффициентов АР и СС, значения остаточной дисперсии), полученные с помощью

Puc. 3. Гистограммы остатков для моделей: a – APCC(0, 2); b – APCC(1, 0) Fig. 3. Histograms of remainders for models: a – ARMA(0, 2); b – ARMA(1, 0)

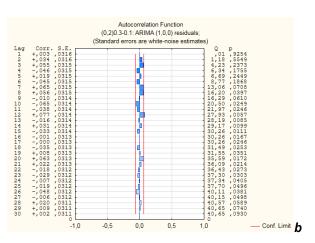


Рис. 4. АКФ рядов остатков для моделей: a – APCC(0, 2); b – APCC(1, 0) Fig. 4. Autocorrelation functions of remainder series for the models: a – ARMA(0, 2); b – ARMA(1, 0)

программного модуля построения моделей, совпадают с параметрами аналогичных моделей, построенных в ППП STATISTICA. Кроме того, во всех приведенных случаях

ряды ошибок прогнозов подчиняются нормальному закону распределения и не коррелированы, что подтверждает адекватность полученных моделей.

Заключение

В статье рассматривается формализованная методика построения прогнозирующих моделей процессов изменения частоты водородных стандартов, исключающая интерактивные процедуры, требующие участия высококвалифицированных специалистов в области анализа временных рядов. Предложенная методика построения прогнозирующих моделей основана на методе перебора всех возможных структур моделей АРСС. Учитывая невысокие максимальные значения порядков АР и СС, всего возможно 11 различных структур, для которых требуется решение оптимизационных задач, связанных с поиском экстремумов функции многих переменных.

Для решения оптимизационных задач предлагается использовать метод сопряженных градиентов, обладающий высоким быстродействием из градиентных методов первого порядка. Процедура подгонки параметров моделей АРСС основана на минимизации остаточной дисперсии. Результаты моделирования показали, что вектор параметров моделей находится методом

сопряженных градиентов за несколько итераций, что полностью согласуется с теоретическими положениями о скорости сходимости метода сопряженных градиентов. Модели, полученные в результате работы разработанного программного обеспечения, совпадают с моделями, полученными с помощью ППП STATISTICA, что подтверждает работоспособность разработанного ПО.

В результате выполненных работ имеются все основания полагать, что разработанный программный модуль может служить основой для создания типового программного обеспечения подсистемы внутренних сличений эталонов ВиЧ с целью введения последующего в режим опытной эксплуатации.

Предлагаемая авторами формализованная методика обработки измерительной информации, получаемой в процессе функционирования эталонов ВиЧ, позволяет решить проблему повышения точностных характеристик эталонов ВиЧ за счет полной автоматизации процесса построения моделей временных рядов по эмпирическим данным.

Библиографический список

- 1. Panfilo G., Harmegnies A., Tisserand L.A new prediction algorithm for the generation of International Atomic Time // Metrologia. 2012. Vol. 49. P. 49–56. DOI:10.1088/0026-1394/49/1/008
- 2. Percival D.B., Senior K.L. A wavelet-based multiscale ensemble time-scale algorithm // Conference: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency. 2012. V. 59. No. 3. P. 510–522.
- 3. Подогова С.Д., Мишагин К.Г., Медведев С.Ю., Блинов И.Ю. Алгоритм групповой шкалы времени с использованием скользящего среднего на нескольких временных масштабах // Измерительная техника. 2015. № 5. С. 40–44. DOI: 10.1007/s11018-015-0749-44. Levine J. The statistical modeling of atomic clocks and the design of timescales // Review of scientific instruments. 2012. Vol. 83, 021101. Р. 1–28. DOI: 10.1063/1.36814
- 5. Greenhall C.A. Reduced Kalman filters for clock ensembles // Conference: IEEE International Frequency Control Symposium. 2011. P. 1–5.

- 6. Рощин Д.А. Модернизация программно-математического обеспечения эталонного комплекса частоты и времени // Прикладная информатика. 2015. Т. 10. № 6 (60). С. 60–69.
- 7. Suess M., Greenhall C.A. Combined covariance reductions for Kalman filter composite clocks // Metrologia. 2012. Vol. 49. P. 588–596.
- 8. Хрусталев Ю.П. Статическая и динамическая обработка данных, получаемых в процессе ведения эталонов времени частоты // Измерительная техника. 2004. № 6. С. 20–23. DOI: 10.1023/B:METE.0000039759.46192.16
- 9. Хрусталев Ю.П., Акулов В.М., Ипполитов А.А., Курышева Л.Н. Обработка данных, полученных по результатам взаимных измерений вторичного эталона времени и частоты // Вестник ИрГТУ. 2012. № 7 (66). С. 22–28.
- 10. Боровиков В.П. Популярное введение в совре-

- менный анализ данных в системе STATISTICA. М.: Горячая линия-Телеком, 2015. 288 с.
- 11. Бокс Дж., Дженкинс Г. Анализ временных рядов, прогноз и управление; в 2 кн. / пер. с англ.; под ред. В.Ф. Писаренко. М.: Мир, 1974. Кн. 1. 406 с.
- 12. Хрусталев Ю.П., Серышева И.А. Автоматизация процесса построения динамических стохастических моделей // Вестник ИрГТУ. 2017. № 9 (119). С. 95–103. http://dx.doi.org: 10.21285/1814-3520-2017-9-95-103
- 13. Базара М., Шетти К. Нелинейное программирова-

- ние. Теория и алгоритмы / пер. с англ. М.: Мир, 1982. 583 с.
- 14. Моисеев Н.Н., Иванилов Ю.П., Столярова Е.М. Методы оптимизации. М.: Наука, 1978. 352 с.
- 15. Эйкхофф П. Основы идентификации систем управления. Оценивание параметров и состояния. М.: Мир, 1975. 680 с.
- 16. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. М.: Вильямс, 2016. 912 с.
- 17. Wilcox R.R. Introduction to Robust Estimation and Hypothesis Testing. Amsterdam: Elsevier, 2012. 690 p.

References

- 1. Panfilo G., Harmegnies A., Tisserand L.A new prediction algorithm for the generation of International Atomic Time. Metrologia, 2012, vol. 49, pp. 49–56. DOI:10.1088/0026-1394/49/1/008
- 2. Percival D.B., Senior K.L. A wavelet-based multiscale ensemble time-scale algorithm. Conference: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency, 2012, vol. 59, no. 3, pp. 510–522.
- 3. Podogova S.D., Mishagin K.G., Medvedev S.Yu., Blinov I.Yu. An algorithm for a group time scale using a moving average over multiple time scales. *Izmeritel'naya tehnika* [Measurements Techniques], 2015, no. 5, pp. 40–44. DOI: 10.1007/s11018-015-0749-4. (In Russian).
- 4. Levine J. The statistical modeling of atomic clocks and the design of timescales. Review of scientific instruments, 2012, vol. 83, 021101, pp. 1–28. DOI: 10.1063/1.36814
- 5. Greenhall C.A. Reduced Kalman filters for clock ensembles. Conference: IEEE International Frequency Control Symposium, 2011, pp. 1–5.
- 6. Roshchin D.A. Software modernization of the standards complex of time and frequency. *Prikladnaya informatika* [Applied Informatics], 2015, vol. 10, no. 6 (60), pp. 60–69. (In Russian).
- 7. Suess M., Greenhall C.A. Combined covariance reductions for Kalman filter composite clocks. Metrologia, 2012, vol. 49, pp. 588–596.
- 8. Hrustalev Yu.P. Statistical and dynamic processing of data obtained when handling time and frequency standards. *Izmeritel'naya tehnika* [Measurement Techniques], 2004, no. 6, pp. 20–23. DOI: 10.1023/B:METE.0000039759.46192.16. (In Russian).
- 9. Hrustalev Yu.P., Akulov V.M., Ippolitov A.A., Kurysheva L.N. Processing data obtained as a result of reciprocal measuring of secondary standard of time and

Критерии авторства

Серышева И.А., Чекан М.А., Бархатова Л.В., Крупенев Е.А. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

- frequency. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2012, no. 7 (66), pp. 22–28. (In Russian).
- 10. Borovikov V.P. *Populyarnoe vvedenie v sovremennyj analiz dannyh v sisteme STATISTICA* [Popular introduction to modern data analysis in the STATISTICA system]. Moscow: Goryachaya liniya-Telekom Publ., 2015, 288 p. (In Russian).
- 11. Boks Dzh., Dzhenkins G. Analysis of time series, forecast and control. 1974. 406 p. (Russ. ed.: *Analiz vremennyh ryadov, prognoz i upravlenie*. Moscow: Mir Publ., 1974, 406 p.).
- 12. Hrustalev Yu.P., Serysheva I.A. Automation of dynamic stochastic model creation process. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* [Proceedings of Irkutsk State Technical University], 2017, no. 9 (119), pp. 95–103. http://dx.doi.org: 10.21285/1814-3520-2017-9-95-103. (In Russian).
- 13. Bazara M., Shetti K. Nonlinear Programming. Theory and algorithms, 1982. 583 p. (Russ. ed.: *Nelinejnoe programmirovanie. Teoriya i algoritmy*. Moscow: Mir Publ., 1982, 583 p.).
- 14. Moiseev N.N., Ivanilov Yu.P., Stolyarova E.M. *Metody optimizacii* [Optimization methods]. Moscow: Nauka Publ., 1978, 352 p. (In Russian).
- 15. Ejkhoff P. Osnovy identifikacii sistem upravleniya. Ocenivanie parametrov i sostoyaniya [Fundamentals of control system identification. Parameter and status evaluation]. Moscow: Mir Publ., 1975, 680 p. (In Russian).
- 16. Drejper N., Smit G. *Prikladnoj regressionnyj analiz* [Applied regression analysis]. Moscow: Vil'yams Publ., 2016, 912 c. (In Russian).
- 17. Wilcox R.R. Introduction to Robust Estimation and Hypothesis Testing. Amsterdam: Elsevier, 2012. 690 p.

Authorship criteria

Serysheva I.A., Chekan M.A., Barkhatova L.V., Krupenev E.A. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Энергетика Power Engineering

Оригинальная статья / Original article УДК 621.311.1

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-83-94

АВТОМАТИЧЕСКАЯ СИНХРОНИЗАЦИЯ «ОСТРОВОВ» ПРИ ВОССТАНОВЛЕНИИ СИСТЕМ ЭЛЕКТРОСНАБЖЕНИЯ С РАСПРЕДЕЛЕННОЙ ГЕНЕРАЦИЕЙ

© А.Ю. Азорин¹

Институт систем энергетики им. Л.А. Мелентьева СО РАН, 664033, Российская Федерация, г. Иркутск, ул. Лермонтова, 130.

РЕЗЮМЕ. ЦЕЛЬ. Разработка алгоритма работы системы автоматической синхронизации при восстановлении системы электроснабжения после аварийного отключения от основного пункта питания и разделения системы электроснабжения СЭС на изолированные «острова». МЕТОДЫ. Отдельные этапы работы системы синхронизации используют матрицы достижимости, построение которых выполняется с применением алгоритма Флойда-Уоршелла. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Работа системы синхронизации по предложенному алгоритму продемонстрирована на тестовой схеме системы электроснабжения. Исполнение алгоритма запускается по факту аварийного отключения коммутационных аппаратов: алгоритм идентифицирует структуру образовавшихся в результате аварии «островов» и формирует однозначный порядок процесса синхронизации; определенные алгоритмом ошибки регулирования поступают на автоматические регуляторы скорости и возбуждения установок распределенной генерации; при достижении синхронизма алгоритм формирует команды на включение коммутационных аппаратов. ВЫВОДЫ. Предложенный алгоритм работы системы синхронизации позволяет восстановить параллельную работу образовавшихся в результате аварии «островов» между собой и с основным пунктом питания. При отключении системы электроснабжения от основного пункта питания требуется перевод автоматических регуляторов скорости установок распределенной генерации на астатическую характеристику для устранения отклонения частоты от номинальной. Для исключения произвольного распределения нагрузки между установками распределенной генерации при переводе автоматических регуляторов скорости установок распределенной генерации на астатическую характеристику необходимо задействовать групповое регулирование активной и реактивной мощно-

Ключевые слова: распределительная электрическая сеть, распределенная генерация, автоматическая синхронизация, векторные измерения, теория графов, алгоритм Флойда-Уоршелла.

Информация о статье. Дата поступления 06 июня 2018 г.; дата принятия к печати 27 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Азорин А.Ю. Автоматическая синхронизация «островов» при восстановлении систем электроснабжения с распределенной генерацией // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 83–94. DOI: 10.21285/1814-3520-2018-8-83-94

AUTOMATIC SYNCHRONIZATION OF "ISLANDS" AT RESTORATION OF POWER SUPPLY SYSTEMS WITH DISTRIBUTED GENERATION

Yu. Azorin

Melentiev Energy Systems Institute SB RAS, 130, Lermontov St., Irkutsk, 664033, Russian Federation

ABSTRACT. The **PURPOSE** of the paper is to develop an operation algorithm of the automatic synchronization system under the restoration of the power supply system after emergency cut-off from the main power source (MPS) and breaking of the power supply system into separate "islands". **METHODS**. Some operation stages of the synchronization system use reachability matrices, for the construction of which the Floyd-Warshall algorithm is used. **RESULTS AND THEIR DISCUSSION**. The operation of the synchronization system using the proposed algorithm is demonstrated on the test scheme of

83

¹Азорин Антон Юрьевич, аспирант лаборатории управления анормальными режимами электроэнергетических систем. e-mail: azorin-anton@vandex.ru

Anton Yu. Azorin, Postgraduate of the Laboratory for Control of Abnormal Modes of Electric Power Systems, e-mail: azorin-anton@yandex.ru

ЭнергетикаPower Engineering

the power supply system. The execution of the algorithm is triggered in case of emergency shutdown of current breakers (CB); the algorithm identifies the structure of the "islands" formed as a result of the accident and forms a definite order of the synchronization process; the error signals determined by the algorithm are applied to automatic speed regulators (ASR) and automatic voltage regulators (AVR) of distributed generators (DG); when the synchronism is achieved the algorithm generates the commands to switch on the current breakers. **CONCLUSIONS**. The proposed algorithm of the synchronization system allows to reconnect the "islands" formed as a result of the accident between each other and with the main power source. When the power supply system is disconnected from the main power source it is necessary to switch the automatic speed regulators of distributed generators to a floating response to eliminate the frequency deviation from the nominal one. In order to exclude an arbitrary load distribution between the distributed generators when the automatic speed regulators are switched to a floating response it is necessary to use a group control of active and reactive power.

Keywords: power distribution system, distributed generation, automatic synchronization, phasor measurements, graph theory, Floyd-Warshall algorithm.

Information about the article. Received June 06, 2018; accepted for publication July 27, 2018; available online August 31, 2018.

For citation. Azorin A.Yu. Automatic synchronization of "islands" at restoration of power supply systems with distributed generation. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 83–94. DOI: 10.21285/1814-3520-2018-8-83-94. (In Russian).

Введение

В последние десятилетия в мире расширяется использование распределенной генерации, представляемой малыми генерирующими установками, подключаемыми к распределительной электрической сети [1, 2]. В связи с использованием установок распределенной генерации (УРГ) в системе электроснабжения (СЭС) возникают проблемы, аналогичные электроэнергетическим системам (ЭЭС) на основе больших генерирующих установок и высоковольтной электрической сети. Одна из таких проблем связана с восстановлением СЭС после крупных аварий, особенно при аварийном отключении основного пункта питания (ОПП) от ЭЭС и разделении СЭС на изолированные «острова» [3, 4]. Важной задачей при этом является синхронизация отделившихся «островов», образованных на основе баланса мощностей генерации и потребления в окрестности УРГ. В связи с необходимостью придания СЭС «активности» в соответствии с развиваемой концепцией интеллектуальной ЭЭС (Smart Grid) [5] синхронизация «островов» при восстановлении СЭС должна осуществляться автоматически. При этом невозможно использовать режимы самосинхронизации при нагруженных генераторах «островов» вследствие появления в таких режимах больших по величине токов

и воздействия на генераторы малых электростанций значительных электродинамических усилий, представляющих угрозу механической прочности генераторов и турбин [6, 7].

Анализ технологии и основных этапов восстановления ЭЭС и СЭС показывает идентичность подходов [8]. Применительно к «активным» ЭЭС и СЭС важной операцией является реконфигурация электрической сети для обеспечения электроснабжения максимально возможной доли потребителей в послеаварийном режиме посредством их переключения с «островов» с дефицитом активной мощности на «острова» с ее избытком [9–11]. С целью получения актуальной информации о параметрах режима используются текущие измерения с помощью PMU для обеспечения полной наблюдаемости электрической сети, что требует оптимальной расстановки этих устройств при минимуме их числа [12]. На основе текущих измерений параметров режима решается задача оценивания состояния СЭС, в общем случае с прогнозом значений параметров режима [13]. Реконфигурация электрической сети выполняется многофункциональными коммутационными аппаратами (КА) – реклоузерами. Тем самым СЭС подготавливается к реализации следующей операции - синхронизации «островов».

Автоматическая синхронизация «островов» СЭС может быть осуществлена соответствующей системой управления. Отметим ряд разработок в этом направлении. В [14] рассматривается подход к созданию устройства адаптивной синхронизации с построением программной (желаемой) траектории движения. Свойство адаптивности требует, чтобы необходимые конечные значения параметров синхронизации с заданной точностью достигались при наличии неопределенных внешних возмущений и неполной информации о свойствах и условиях функционирования синхронизируемых объектов. Приведены результаты моделирования алгоритмов устройства адаптивной синхронизации в программном комплексе Mustang и в среде Matlab/Simulink. Анализ результатов численных экспериментов показывает эффективность этих алгоритмов.

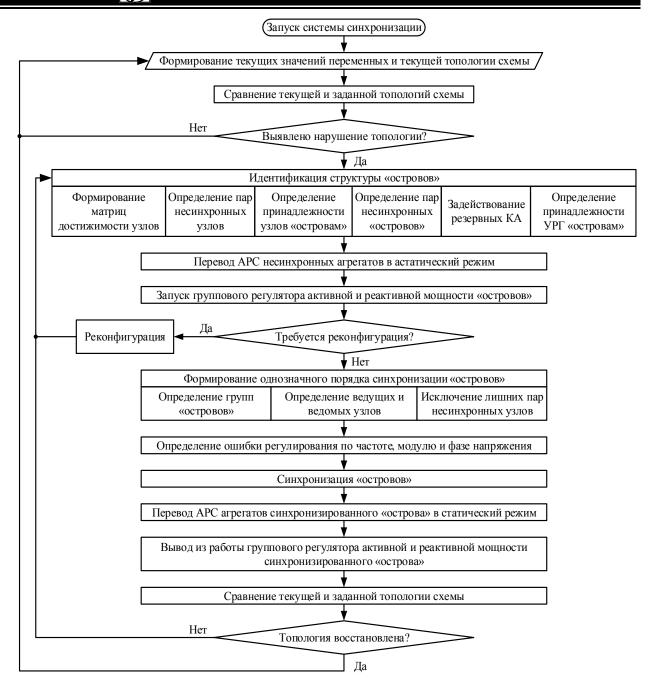
В [15] приводится краткий анализ проблемы синхронизации «островов» и метод автоматической синхронизации, основанный на измерениях устройств РМО. Эти измерения поступают на контроллер УРГ одного из синхронизируемых «островов», где выполняется сравнение амплитуд, фазовых углов напряжений в точке синхронизации и их корректировка с целью совпадения с заданной точностью с помощью пропорционально-интегрального регулятора генератора «острова». При таком совпадении реализуется включение линии в точке синхронизации. Работа алгоритма демонстрируется на тестовой схеме, включающей ди-

зель-генератор, фотоэлектрическую установку и шины питания от ЭЭС и реализованной в виде лабораторного стенда. В [12] рассматривается близкий подход на основе данных от измерений РМО, их анализа и корректировки с целью совпадения, при этом процесс синхронизации «островов» включает участие диспетчерского персонала. Авторы [16] рассматривают для «мягкой» синхронизации одного «острова» (микросистема) с ЭЭС подход на базе теории робастного управления. Учитывается неопределенность динамики поведения микросистемы при вариации ее параметров.

В [17] обсуждаются проблемы помехоустойчивости аппаратуры пользователей глобальных навигационных спутниковых систем при реализации задач синхронизации. Выполнены эксперименты по подавлению помех, приведен опыт разработки помехоустойчивой аппаратуры в России и за рубежом.

Представленный анализ имеющихся к настоящему времени разработок по рассматриваемой проблеме показывает, что задача реконфигурации СЭС в послеаварийном режиме имеет достаточно разностороннюю проработку. Однако анализ результатов исследований по синхронизации «островов» СЭС демонстрирует их фрагментарный характер. Необходимо формирование общего подхода к решению проблемы при наличии нескольких «островов» и потере связи с ЭЭС в послеаварийных режимах СЭС при учете основных влияющих факторов и условий.

Подход к автоматической синхронизации «островов» при восстановлении СЭС


Последовательность операций системы автоматической синхронизации «островов» при восстановлении СЭС приведена на рис. 1.

Работа отдельных алгоритмов требует задания топологии нормальной схемы СЭС и ее параметров, упорядоченных вполне определенным образом в виде соответствующих векторов и матриц, структура которых будет конкретизирована далее по ходу изложения.

Результаты работы системы синхро-

низации демонстрируются на тестовой схеме СЭС, приведенной на рис. 2 а. Для работы алгоритма необходимо выполнить преобразование электрической схемы во взвешенный граф по следующим правилам: шины СЭС преобразуются в узлы графа; в граф добавляются узлы с каждой стороны контактов КА; в граф добавляются узлы с каждой стороны линии связи. В случае если в одной точке имеется несколько узлов, то они объединяются в один. Ребрам графа присваиваются значения веса с последую-

Энергетика Power Engineering

Puc. 1. Блок-схема алгоритма системы синхронизации Fig. 1. Block diagram of the synchronization system algorithm

щей записью этих значений в матрицы смежности. На рис. 2 *b* показан граф электрической схемы СЭС в послеаварийном состоянии. Для наглядности на графе изображены такие элементы СЭС как генераторы, линии и КА.

После запуска системы синхронизации первый этап ее работы включает циклическое формирование текущих значений переменных, которые участвуют в процессе синхронизации (частота, амплитуды и фазы

напряжений в узлах, значения нагрузок, генерируемых активной и реактивной мощностей), а также текущих параметров топологии схемы (положение КА, запреты на операции с КА, значения команд управления и т.д.). При этом применяются текущие телеизмерения переменных состояния и телесигналы положения КА.

Далее с использованием текущих параметров топологии схемы происходит сравнение текущих положений КА с задан-

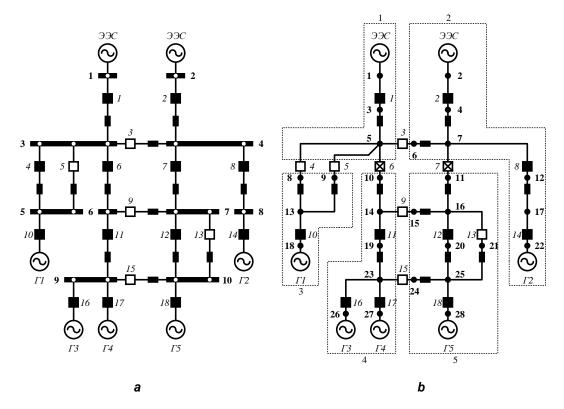


Рис. 2. Однолинейная электрическая схема СЭС (а), граф электрической схемы СЭС в послеаварийном состоянии (b)

Fig. 2. Single line diagram of the DS (a), graph of the DS electrical circuit in the post-fault state (b)

ными. В случае аварийного отключения КА его текущее и заданное положения не совпадают, поэтому запускаются дальнейшие операции системы синхронизации. Таким образом, выявляется аварийное отключение КА 4, 6, 7. При совпадении текущего и заданного положения КА алгоритм переходит на следующий этап мониторинга текущих параметров топологии схемы.

На следующем этапе алгоритма идентифицируется структура образовавшихся в результате аварии «островов», которая определяется шестью факторами:

- связность узлов внутри каждого «острова»;
- наличие пар несинхронных узлов, представляющих собой клеммы разомкнутых в процессе формирования «островов» КА выключателей; несинхронные узлы соответствуют границам «островов»;
 - принадлежность узлов «островам»;
- наличие пар несинхронных «островов»;
- наличие отказавших КА при формировании «островов», которые выявляются

схемой автоматического управления КА, а также в результате действия устройств резервирования отказов выключателей (УРОВ);

• принадлежность УРГ к конкретным «островам».

Связность схемы внутри «острова» определяется так называемой матрицей достижимости узлов, которая отражает связь каждого узла с другим узлом непосредственно или через иные узлы. Формирование матрицы достижимости производится с использованием бинарной матрицы смежности путем применения вариации алгоритма Флойда-Уоршелла [18].

Система синхронизации применяет различные вариации матриц достижимости. Матрица фактической достижимости формируется только с учетом фактических положений КА и показывает только фактические связи между узлами. Матрица потенциальной достижимости формируется с учетом отказов КА и демонстрирует не только фактические связи, но и потенциальные. Эти матрицы используются в дальнейшем

при работе системы синхронизации. Формирование матриц достижимости производится по факту выявления аварийного отключения КА.

За счет матрицы, задающей соответствие между порядковым номером КА и смежными узлами, выявляются соответствующие пары несинхронных узлов 5 – 8, 5 – 10, 7 – 11, которые запоминаются в соответствующую матрицу. Пары несинхронных узлов, помимо принадлежности каждого из них к границам «островов», в последующем будут узлами синхронизации «островов».

Для дальнейшей работы алгоритма необходимо определить структуру «островов», которая характеризуется узлами, входящими в их состав, и связями между ними. Для этого сначала из матрицы фактической достижимости исключаются все строки кроме тех, номера которых соответствуют номерам несинхронных узлов (5, 7, 8, 10, 11). Так как несколько несинхронных узлов могут относиться к одному «острову», то на втором шаге производится поиск и исключение повторных строк матрицы, полученной на предыдущем шаге. В рассматриваемом примере несинхронные узлы принадлежат разным «островам», поэтому совпадений между строками нет. В результате этих операций будет получена матрица, которая отражает принадлежность узлов «островам».

Для работы алгоритма также требуется сформировать матрицу пар несинхронных «островов», которая показывает, какие из «островов» синхронизируются между собой. Формирование данной матрицы выполняется на основе матрицы, отражающей принадлежность узлов «островам». Таким образом, алгоритм определяет, что несинхронные узлы 5, 7, 8, 10, 11 принадлежат «островам» 1, 2, 3, 4, 5, соответственно, и находит пары несинхронных «островов» 1 – 3, 1 – 4, 2 – 5, которые записываются в соответствующую матрицу.

Отказавшие КА (6, 7), выявленные на текущем шаге работы системы, не могут далее участвовать в коммутационных операциях, а соответствующие пары несинхронных узлов ($\mathbf{5} - \mathbf{10}$, $\mathbf{7} - \mathbf{11}$) исключаются из операций синхронизации. Кроме того, из со-

ответствующей матрицы исключаются несинхронные пары «островов» (1-4, 2-5). Выявление отказавших КА выполняется с помощью телесигналов, поступающих от схем автоматического управления КА и УРОВ.

Вместо каждого отказавшего КА используются резервные КА. Эта процедура выполняется с помощью матрицы фактической достижимости путем поиска связей несинхронных узлов, непосредственно связанных с отказавшим КА ($\mathbf{5}$, $\mathbf{7}$, $\mathbf{10}$, $\mathbf{11}$), с узлами, непосредственно связанными с резервными КА. Наличие фактической связи узлов $\mathbf{5} - \mathbf{5}$, $\mathbf{7} - \mathbf{6}$, $\mathbf{8} - \mathbf{9}$, $\mathbf{10} - \mathbf{14}$, $\mathbf{10} - \mathbf{23}$, $\mathbf{11} - \mathbf{15}$, $\mathbf{11} - \mathbf{16}$, $\mathbf{11} - \mathbf{21}$, $\mathbf{11} - \mathbf{24}$ позволит использовать резервные КА $\mathbf{3}$, $\mathbf{5}$, $\mathbf{9}$, $\mathbf{13}$, $\mathbf{15}$.

При отсутствии отказа резервного КА он задействуется при соблюдении ряда дополнительных условий: резервный КА не должен соединять разные ОПП; резервный КА не должен соединять «острова», которые уже синхронизируются; резервный КА не должен соединять узлы, принадлежащие одному «острову».

Для проверки выполнения первого условия используется матрица фактической достижимости, при этом узлы из несинхронной пары не должны быть связаны с разными ОПП. В результате проверки по этому условию алгоритм определит наличие фактической связи ОПП (узлы 1, 2) со смежными узлами 5, 6 и исключит КА 3 из рассмотрения.

Проверка выполнения второго условия реализуется с применением матрицы пар несинхронных «островов». Алгоритм производит оценку совпадения имеющихся пар несинхронных «островов» с парами, которые будут добавлены при задействовании резервного КА. За счет того, что узлы 5, 9 относятся к тем же «островам» 1, 3, что и узлы 5, 8, алгоритм выявит, что резервный КА 5 соединит «острова», которые уже синхронизируются через КА 4, и исключит КА 5 из рассмотрения.

При проверке выполнения третьего условия производится оценка того факта, что в каждую пару несинхронных «островов» входят разные «острова», а не один и

тот же «остров». Для этого используется матрица, которая отражает принадлежность узлов «островам». Таким образом, алгоритм выявит, что смежные узлы **16**, **21** рассматриваемого КА *13* принадлежат одному «острову» 5, и исключит КА *13* из рассмотрения.

В итоге будут задействованы резервные КА 9, 15, а в операцию синхронизации будут включены несинхронные пары узлов 14 – 15, 23 – 24. Также в соответствующую матрицу тестового примера будут внесены несинхронные пары «островов» 4 – 5, 4 – 5 (на последующей стадии алгоритм выявит двойную связь и исключит один из КА).

Принадлежность УРГ к конкретным «островам» определяется путем применения матрицы, отражающей принадлежность узлов «островам». Алгоритм выявит, что узлы 18, 22, 26, 27, 28 непосредственно связанные с УРГ, принадлежат «островам» 3, 2, 4, 4, 5, соответственно. Информация о принадлежности требуется для функционирования изложенного ниже алгоритма группового регулирования активной и реактивной мощности (ГРАРМ).

При формировании алгоритма автоматической синхронизации «островов» следует учесть один специфический фактор, вносящий определенные особенности в процесс синхронизации. Этот фактор связан со статизмом автоматических регуляторов скорости малых генераторных установок (АРС УРГ) [4]. В ЭЭС для однозначности распределения нагрузки между агрегатами АРС части из них настраиваются на статическую характеристику. С целью же поддержания частоты в ЭЭС в необходимых пределах АРС некоторых агрегатов настраиваются на астатическую характеристику. Если хотя бы один АРС настроен астатически, то характеристика всей ЭЭС будет астатической [19].

Так как мощности УРГ в СЭС, работающих совместно с ЭЭС, крайне недостаточны для участия в регулировании частоты в системе, то исключено, что АРС этих агрегатов будут настроены на астатическую характеристику. В случае потери связи с ЭЭС и нарушения устойчивости параллельной работы УРГ с разделением СЭС на изоли-

рованные «острова» отклонения частоты внутри последних в силу настройки АРС на статическую характеристику могут превышать допустимые пределы.

В этом случае с целью восстановления нормального режима «островов» СЭС необходимо перед их синхронизацией перевести АРС каждого агрегата, не связанного с ОПП, со статической характеристики на астатическую. Это позволит установить частоту внутри каждого «острова» на номинальном значении. В дальнейшем это также облегчит синхронизацию «островов» между собой и с ОПП. После полного восстановления СЭС и ее связи с ОПП АРС УРГ будут переведены на статическую характеристику [4].

Необходимость выполнить перевод АРС агрегатов на астатическую характеристику выявляется при помощи матрицы фактической достижимости. В случае отсутствия связи узла, непосредственно связанного с УРГ, со всеми ОПП будет выполнен перевод АРС этой УРГ на астатическую характеристику. Для тестовой схемы алгоритм определит, что узлы 18, 26, 27, 28 не связаны ни с одним ОПП (узлы 1, 2) и выполнит перевод АРС УРГ Г1, Г3, Г4, Г5 на астатическую характеристику.

После перевода АРС УРГ на астатическую характеристику в случае нескольких агрегатов, параллельно работающих в «острове», будет иметь место произвольное распределение нагрузки между этими агрегатами. Для устранения такого нежелательного эффекта необходимо регулировать распределение нагрузки между агрегатами по определенному закону, например, пропорционально установленным мощностям агрегатов в «острове». С целью реализации требуемого регулирования применяется изложенный ниже алгоритм группового регулирования активной и реактивной мощности (ГРАРМ).

На первом шаге выявляется принадлежность каждого генератора *j* «острову» *i*. Затем вычисляются суммарные генерируемые – активная, реактивная и полная мощности, а также установленные полные мощности для каждого «острова». На следующем шаге для каждого генератора *j*, входя-

щего в состав «острова» i, вычисляется разница между требуемой (соответствующей пропорциональному распределению между агрегатами) и текущей генерацией активной и реактивной мощностей. Эти значения поступают на APC и автоматические регуляторы возбуждения (APB) соответствующей УРГ в качестве ошибки регулирования. Для нахождения значений требуемой мощности агрегата определяется доля полной мощности генератора j в полной генерируемой мощности «острова» i, которую должен взять на себя генератор j.

После установления номинальной частоты за счет перевода АРС в астатический режим и перераспределения нагрузки между агрегатами устройством ГРАРМ наступает установившийся послеаварийный режим «островов» СЭС. В работу вступает алгоритм реконфигурации с целью устранения перегрузки линий, улучшения режима напряжений, обеспечения надежности и снижения потерь энергии путем преобразования схемы СЭС [20]. В ходе этого процесса изменяется топология «островов», их границы, но при этом не восстанавливается связь между ними и с ОПП по причине отсутствия синхронизма. Алгоритмы реконфигурации СЭС представлены в работах [21, 22 и др.]. Рассмотрение процесса реконфигурации в данной работе не производится, принимается, что СЭС находится в состоянии, когда реконфигурация выполнена.

Следующий этап формирует однозначный порядок процесса синхронизации «островов» и включает следующие операции:

- определение групп «островов»;
- определение ведущих и ведомых узлов в «острове»;
- исключение лишних пар несинхронных узлов.

Базовый принцип синхронизации – присоединение «островов» к части СЭС, связанной электрически с ОПП (своего рода наращивание этой части СЭС за счет последовательного присоединения «островов»). Процесс синхронизации включает уравнивание частот, амплитуд и фаз напряжений между двумя несинхронными узлами. Система синхронизации может управлять

этими параметрами, воздействуя на APC и APB УРГ, не имея при этом возможности повлиять на параметры внешней ЭЭС, так как зона ее действия ограничена рамками конкретной СЭС. Таким образом, система должна принять параметры ЭЭС в качестве опорных, несинхронные узлы, связанные с ОПП – в качестве ведущих, а парные несинхронные узлы – в качестве ведомых, параметры которых будут меняться для достижения синхронизации.

При разделении СЭС на «острова» могут возникать различные варианты, при которых «острова» могут быть как потенциально связаны между собой (через отключенный КА), так и полностью изолированы, т. е. не иметь возможности синхронизации по причине отказов КА. Кроме того, изолированными могут оказаться скопления «островов», которые, в свою очередь, могут быть потенциально связаны между собой. Чтобы сформировать однозначный порядок синхронизации «островов» при различных вариантах, производится определение групп «островов». С этой целью выполняется оценка потенциальных связей между «островами». На тестовой схеме алгоритм выявит наличие двух изолированных между собой групп «островов». В первую группу войдут «острова» 1, 2 и 3, во вторую группу – «острова» 4 и 5.

После выявления групп «островов» алгоритм оценивает потенциальную связь каждой группы с ОПП. Будет установлено, что первая группа имеет потенциальные связи с ОПП (несинхронные узлы 5 и 8 имеют потенциальные связи с узлами 1 и 2). Также будет установлено, что вторая группа не имеет потенциальных связей с ОПП (несинхронные узлы 14, 15, 23 и 24 не имеют потенциальных связей с узлами 1 и 2).

В зависимости от возможности восстановления связей группы «островов» с ОПП выбирается стратегия синхронизации. При наличии потенциальных связей группы «островов» с ОПП алгоритм приступает к определению ведущих и ведомых узлов.

Определение ведущих и ведомых узлов среди каждой пары несинхронных узлов выполняется на основе сравнения количе-

ства коммутаций от каждого узла из пары несинхронных узлов до ближайшего узла, непосредственно связанного с ОПП. Количество коммутаций определяется числом отключенных КА на пути между анализируемыми узлами. При наличии нескольких путей принимается к рассмотрению путь с минимальным числом коммутаций. Количество коммутаций между каждой парой узлов определяется с помощью матрицы достижимости, формирование которой выполняется на основе соответствующей матрицы смежности путем применения вариации алгоритма Флойда-Уоршелла. При этом матрица смежности формируется с учетом текущих положений КА.

Статус ведомого узла присваивается узлу с большим количеством коммутаций по сравнению с ведущим узлом, так как он удален от ОПП, как минимум, на одну коммутацию больше, чем ведущий узел. Если количество коммутаций от нескольких несинхронных узлов до ближайшего узла, непосредственно связанного с ОПП, одинаково, в качестве ведущего узла используется несинхронный узел с наименьшим «электрирасстоянием. «Электрическое» ческим» расстояние между каждой парой узлов определяется матрицей достижимости, формирование которой производится на основе соответствующей матрицы смежности пуприменения вариации алгоритма Флойда-Уоршелла.

В результате работы алгоритма на данном шаге среди пары несинхронных узлов 5 – 8, принадлежащих, соответственно, «островам» 1, 3, входящим в первую группу, узлу 5 будет присвоен статус ведущего узла, а узлу 8 – ведомого, поскольку минимальное количество коммутаций от узла 5 до ближайшего ОПП (узла 1) составляет ноль, а от узла 8 – одну коммутацию.

Этот же критерий определения ведущего узла применяется и в случае нескольких ОПП СЭС от ЭЭС. Выбор ведущего несинхронного узла, по которому будет производиться синхронизация рассматриваемого «острова» с ОПП, обеспечивает однозначность операции синхронизации.

Отсутствие потенциальной связи

группы «островов» с ОПП делает невозможным выявление ведущих и ведомых узлов по описанному алгоритму. В таком случае запускается процедура определения ведущего «острова» группы, в качестве которого рассматривается «остров» с наибольшим значением суммы полной генерируемой мощности «острова» в данном режиме и полной установленной мощности его генерирующих источников, умноженной на количество генераторов. Примем, что «остров» 4, в состав которого входят УРГ Γ 3, Γ 4, имеет большее значение полной генерируемой мощности и полной установленной мощности чем «остров» 5, в состав которого входит УРГ Г5. В этом случае алгоритм установит, что ведущим «островом» второй группы является «остров» 4.

Узлы, непосредственно связанные с УРГ ведущего «острова» (узлы 26, 27), в таком случае наделяются статусом «узлов, непосредственно связанных с ОПП». Далее работает описанный выше алгоритм определения ведущего и ведомых узлов. Таким образом, будет найдено минимальное количество коммутаций от несинхронных узлов **14**, **15**, **23** и **24**, относящихся к «островам» второй группы, до ОПП (узлов 26, 27). В результате из несинхронных пар узлов 14 – 15 и 23 – 24, узлам 14 и 23 будет присвоен статус ведущих узлов, а узлам 15 и 24 – ведомых. Изложенный подход используется также и в случае изолированной СЭС, в которой ОПП отсутствует.

При определении ведущих и ведомых узлов может встретиться ситуация, когда двум или более несинхронным узлам, относящимся к одному «острову», может быть присвоен статус ведомых. Так как «остров» не может быть синхронизирован одновременно с несколькими другими «островами», то необходимо исключить все пары несинхронных узлов данного «острова» из процесса синхронизации кроме одной. С этой целью алгоритм использует сформированную ранее матрицу пар несинхронных «островов». С ее помощью выполняется подсчет количества ведомых узлов в каждом «острове». При выявлении более одного ведомого узла в «острове» алгоритм

определяет номера несинхронных узлов, которые относятся к этому «острову». В результате работы алгоритма будет выявлено наличие двух ведомых узлов 15 и 24, принадлежащих одному «острову» 5.

Данное событие инициирует процедуру определения количества коммутаций от ведущих узлов соответствующих несинхронных пар - узлов 14 и 23 - до ближайшего ОПП (узлов 26, 27), в результате которой исключается пара несинхронных узлов с большим количеством коммутаций. Однако в нашем примере количество коммутаций составит ноль в обоих случаях. В случае равенства количества коммутаций выполняется определение и сравнение «электрических» расстояний от ведущих узлов до основных источников питания. Очевидно, что «электрическое» расстояние между узлами 23 и 26, 27 меньше, чем между узлами 14 и 26, 27 и поэтому пара несинхронных узлов 23 – 24 будет принята, а пара 14 – 15 – исключена из процесса синхронизации.

На следующей стадии работы системы синхронизации выявляются ошибки регулирования по частотам, модулям и фазам напряжений синхронизируемого «острова» и части СЭС, связанной с ОПП. Для этого используются значения рассматриваемых переменных в найденных ведущих и ведомых узлах, по которым производится синхронизация. Разности соответствующих переменных и являются ошибками регулирования, которые поступают на входы АРС и APB агрегатов синхронизируемого «острова» с целью уравнивания синхронизируемых переменных пар несинхронных узлов. APC и APB отрабатывают ошибки регулирования по заданным законам с использовапропорционально-интегрально-дифференцирующего принципа регулирования. После отработки ошибок регулирования формируется сигнал на включение КА и синхронизация «острова» к части СЭС, подключенной к ОПП, заканчивается.

После завершения синхронизации «острова» производятся обратный перевод АРС его агрегатов в статический режим и вывод из работы группового регулятора активной и реактивной мощности (ГРАРМ) синхронизированного «острова».

Для выявления факта окончания синхронизации всех «островов» выполняется сравнение текущей и заданной топологий схемы СЭС. Если синхронизация всех «островов» завершена, то текущая и заданная топологии совпадают, то происходит переход к циклическому мониторингу переменных состояния и топологии схемы. Факт несовпадения топологий свидетельствует о незавершенности операции синхронизации «островов» и алгоритм синхронизации переходит к идентификации сложившейся на данном этапе структуры «островов».

Заключение

В данной статье на примере тестовой схемы рассмотрен алгоритм работы системы синхронизации, целью которого является восстановление параллельной работы «островов», образовавшихся в результате отключения СЭС от ОПП. При этом алгоритм реализует метод точной автоматической синхронизации.

Работа алгоритма базируется на использовании матриц достижимости, формирование которых осуществляется с помощью алгоритма Флойда-Уоршелла. С целью

получения актуальной информации о параметрах режима используются текущие измерения устройств РМU. При отключении СЭС от ОПП алгоритм предусматривает перевод АРС УРГ на астатическую характеристику с целью устранения отклонения частоты от номинальной. Исключение произвольного распределения нагрузки между параллельно работающими УРГ (вследствие перевода АРС УРГ на астатическую характеристику) осуществляется за счет внедрения ГРАРМ.

Энергетика Power Engineering

Библиографический список

- 1. Jenkins N., Allan R., Crossley P. Embedded generation. London: IET Press, 2009. 297 p.
- 2. Воропай Н.И. Распределенная генерация в электроэнергетических системах. Международная научно-практическая конференция «Малая энергетика-2005» [Электронный ресурс]. URL: http://www.combienergy.ru/stat/983-Raspredelennayageneraciya-v-elektroenergeticheskih-sistemah (25.05.2018).
- 3. Буй Динь Тхань, Воропай Н.И. Восстановление системы электроснабжения с распределенной генерацией после крупной аварии // Промышленная энергетика. 2011. № 8. С. 6–14.
- 4. Азорин А.Ю., Воропай Н.И. Проблемы синхронизации при восстановлении систем электроснабжения, включающих распределенную генерацию // Электроэнергетика глазами молодежи: труды V Междунар. науч.-техн. конф. (г. Томск, 10–14 ноября 2014 г.). Томск, 2014. С. 382–385.
- 5. Chowdhury S., Chowdhury S.P., Crossley P. Microgrids and active distribution networks. London: IET Press. 2009. 320 p.
- 6. Хачатуров А.А. Несинхронные включения и синхронизация в энергосистемах. М.: Энергия, 1977. 176 с. 7. Нудельман Г.С. Релейная защита и автоматика в условиях развития малой распределенной энергетики // Электроэнергия. Передача и распределение. 2014. № 4. С. 6–10.
- 8. Voropai N.I., Krol A.M., Bui Dinh Thanh. Power system restoration plans for transmission and distribution networks // 8th IFAC Symposium on Power Plant and Power System Control, Toulouse, France, September 2–5, 2012. 5 p.
- 9. Воропай Н.И., Стычински З.А., Шушпанов И.Н. Модель режимной надежности «активных» распределительных электрических сетей // Известия РАН. Энергетика. 2013. № 6. С. 70–79.
- 10. Kleppinger D., Broadwater R., Scirbona C. Generic reconfiguration for restoration // Electric Power Systems Research. 2010. Vol. 80. No. 3. P. 287–295.
- 11. Grega M., Jedinak M., Smidovic R. Synchronization options in the transmission system in case of the reconfiguration // IFAC Workshop on Control of Transmission and Distribution Smart Grids. (Prague, 11–13 October 2016). Prague, 2016. P. 386–389.
- 12. Sarmadi A.N., Dobakhshari A.S., Azizi S., Ranjbar A.M. A sectionalizing method in power system restoration based on WAMS // IEEE Transactions on Smart

- Grid. 2011. Vol. 2. No. 1. P. 190-197.
- 13. Xin Wang, Edwin E.Y. Smart power grid synchronization with fault tolerant nonlinear estimation // IEEE Transactions on Power Systems. 2016. Vol. 31. No. 6. P. 4806–4816.
- 14. Беляев Н.А., Прохоров А.В., Свечкарев С.В., Хрущев Ю.В. Анализ эффективности алгоритмов работы устройства адаптивной синхронизации генератора с сетью и частей энергосистем // Современные направления развития систем релейной защиты и автоматики энергосистем: сб. докл. V Междунар. конф. Сочи, 2015.
- 15. Shi Di, Luo Yusheng, Sharma R.K. Active synchronization control for microgrid reconnection after islanding // IEEE PES Innovative Smart Grid Technologies Europe Conf. (Istanbul, 12–15 October 2014). Istanbul, 2014. P. 402–407.
- 16. Taher S.A., Zolfaghari M., Cho Ch. A new approach for soft synchronization of microgrid using robust control theory // IEEE Transactions on Power Delivery. 2017. Vol. 32. No. 3. P. 1370–1381.
- 17. Нудельман Г.С., Оганесян А.А., Харисов В.Н. Уязвимость систем синхронизации, основанных на использовании глобальных навигационных спутниковых систем // Электроэнергия. Передача и распределение. 2013. № 3. С. 60–65.
- 18. Hofner P., Moller B. Dijkstra, Floyd and Warshall meet // Formal Aspect of Computing. 2012. Vol. 24. No. 4. P. 459–476.
- 19. Павлов Г.М., Меркурьев Г.В. Автоматика энергосистем. СПб.: Центр подготовки кадров энергетики. 2001. 388 с.
- 20. Андреев А.Н., Булатов Б.Г., Марков М.И., Тарасенко В.В. Концепция системы интеллектуального управления распределительными электрическими сетями // Электроэнергетика глазами молодежи: труды VI международной научно-технической конференции (г. Иваново, 9–13 ноября 2015 г.). Иваново, 2015. С. 342–345.
- 21. Yuan-Kang Wu, Ching-Yin Lee, Le-Chang Liu, Shao-Hong Tsai. Study of Reconfiguration for the Distribution System with Distributed Generators // IEEE Transactions on Power Delivery. 2010. Vol. 25. Issue 3. P. 1678–1685. 22. Фишов А.Г., Мукатов Б.Б. Реконфигурация электрических сетей с распределенной генерацией и мультиагентным управлением // Известия Томского политехнического университета. Инжиниринг георесурсов. 2015. Т. 326. № 9. С. 143–152.

References

- 1. Jenkins N., Allan R., Crossley P. Embedded generation. London: IET Press, 2009, 297 p.
- 2. Voropaj N.I. Raspredelennaya generaciya v elektroenergeticheskih sistemah. Mezhdunarodnaya nauchnoprakticheskaya konferenciya «Malaya energetika-2005» [Distributed generation in electric power systems. International Scientific and Practical Conference "Small-

Scale Generation-2005"]. Available at: http://www.combienergy.ru/stat/983-Raspredelennaya-generaciya-v-elektroenergeticheskih-sistemah (accessed 25 May 2018).

3. Buj Din' Than', Voropaj N.I. Restoration of power supply system with distributed generation after a major accident. *Promyshlennaya energetika* [Industrial Power Engineering], 2011, no. 8, pp. 6–14. (In Russian).

93

Энергетика Power Engineering

- 4. Azorin A.Yu., Voropaj N.I. *Problemy sinhronizacii pri vosstanovlenii sistem elektrosnabzheniya, vklyuchayushchih raspredelennuyu generaciyu* [Synchronization problems under power supply systems restoration including distributed generation]. *Trudy V Mezhdunarodnoj nauchno-tekhnicheskoi konferencii "Elektroenergetika glazami molodezhi"* [Proceedings of V International Scientific and Technical Conference "Electrical Power Industry", Tomsk, 10–14 November 2014]. Tomsk, 2014. C. 382–385. (In Russian).
- 5. Chowdhury S., Chowdhury S.P., Crossley P. Microgrids and active distribution net-works. London: IET Press. 2009, 320 p.
- 6. Hachaturov A.A. *Nesinhronnye vklyucheniya i sinhronizaciya v energosistemah* [Out of phase switching and synchronization in power systems]. Moscow: Energiya Publ., 1977, 176 p. (In Russian).
- 7. Nudel'man G.S. Relay protection and automation in small-scale distributed power generation development. *Elektroenergiya. Peredacha i raspredelenie* [Electric Power. Transmission and Distribution], 2014, no. 4, pp. 6–10. (In Russian).
- 8. Voropai N.I., Krol A.M., Bui Dinh Thanh. Power system restoration plans for trans-mission and distribution networks. 8th IFAC Symposium on Power Plant and Power Sys-tem Control, Toulouse, France, September 2–5, 2012.
- 9. Voropaj N.I., Stychinski Z.A., Shushpanov I.N. Model of mode reliability of "active" distribution electrical networks. *Izvestiya RAN. Energetika* [Proceedings of the Russian Academy of Sciences. Power engineering], 2013, no. 6, pp. 70–79. (In Russian).
- 10. Kleppinger D., Broadwater R., Scirbona C. Generic reconfiguration for restoration. Electric Power Systems Research, 2010, vol. 80, no. 3, pp. 287–295.
- 11. Grega M., Jedinak M., Smidovic R. Synchronization options in the transmission system in case of the reconfiguration. IFAC Workshop on Control of Transmission and Distribution Smart Grids. (Prague, 11–13 October 2016). Prague, 2016, p. 386–389.
- 12. Sarmadi A.N., Dobakhshari A.S., Azizi S., Ranjbar A.M. A sectionalizing method in power system restoration based on WAMS. IEEE Transactions on Smart Grid, 2011, vol. 2, no. 1, pp. 190–197.
- 13. Xin Wang Edwin smart power grid synchronization with fault tolerant nonlinear estimation. IEEE Transactions on Power Systems, 2016, vol. 31, no. 6, p. 4806–4816.
- 14. Belyaev N.A., Prohorov A.V., Svechkarev S.V., Hrushchev Yu.V. *Analiz effektiv-nosti algoritmov raboty ustrojstva adaptivnoj sinhronizacii generatora s set'yu i*

Критерии авторства

Азорин А.Ю. подготовил рукопись и несет ответственность за плагиат.

Конфликт интересов

Автор заявляет об отсутствии конфликта интересов.

- chastej energosistem [Efficiency analysis of the operation algorithms of the device for adaptive synchronization of the generator with the network and power grid parts]. Sbornik dokladov V Mezhdunarodnoj konferencii "Sovremennye napravleniya razvitiya sistem relejnoj zashchity i avtomatiki energosistem" [Collection of reports of V International Conference "Current Development Trends of Power Grid Relay Protection and Automation Systems"]. Sochi, 2015. (In Russian).
- 15. Shi Di, Luo Yusheng, Sharma R.K. Active synchronization control for microgrid re-connection after islanding. IEEE PES Innovative Smart Grid Technologies Europe Conf. (Istanbul, 12–15 October 2014). Istanbul, 2014, pp. 402–407.
- 16. Taher S.A., Zolfaghari M., Cho Ch. A new approach for soft synchronization of microgrid using robust control theory. IEEE Transactions on Power Delivery, 2017, vol. 32, no. 3, pp. 1370–1381.
- 17. Nudel'man G.S., Oganesyan A.A., Harisov V.N. Vulnerability of synchronization systems based on the use of global navigation satellite systems. *Elektroenergiya. Peredacha i raspredelenie* [Electric Power. Transmission and Distribution], 2013, no. 3, pp. 60–65. (In Russian).
- 18. Hofner P., Moller B. Dijkstra, Floyd and Warshall meet. Formal Aspect of Computing, 2012, vol. 24, no. 4, pp. 459–476.
- 19. Pavlov G.M., Merkur'ev G.V. Avtomatika energosistem [Automation of power systems]. Saint-Petersburg: Center for Training Energy Personnel, 2001, 388 p. (In Russian).
- 20. Andreev A.N., Bulatov B.G., Markov M.I., Tarasenko V.V. Koncepciya sistemy intellektual'nogo upravleniya raspredelitel'nymi elektricheskimi setyami [The concept of a system for intelligent control of distribution electric networks]. Trudy VI mezhdunarodnoj nauchno-tekhnicheskoj konferencii "Elektroenergetika glazami molodezhi" [Proceedings of VI International Scientific and Technical conference "Electric Power Industry through the Eyes of Youth", Ivanovo, 9–13 November 2015]. Ivanovo, 2015, pp. 342–345. (In Russian).
- 21. Yuan-Kang Wu, Ching-Yin Lee, Le-Chang Liu, Shao-Hong Tsai. Study of Reconfiguration for the Distribution System with Distributed Generators. IEEE Transactions on Power Delivery, 2010, vol. 25, issue 3, pp. 1678–1685.
- 22. Fishov A.G., Mukatov B.B. Reconfiguration of electric networks with distributed generation and multi-agent control. *Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov* [Proceedings of Tomsk Polytechnic University. Engineering georesources], 2015, vol. 326, no. 9, pp. 143–152. (In Russian).

Authorship criteria

Azorin A. Yu. has prepared the manuscript for publication and bears the responsibility for plagiarism.

Conflict of interests

The author declares that there is no conflict of interests regarding the publication of this article.

ЭнергетикаPower Engineering

Оригинальная статья / Original article УДК 621.314.26

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-95-103

ВЛИЯНИЕ КОНДЕНСАТОРНЫХ УСТАНОВОК НА ПЕРЕТОКИ МОЩНОСТИ ВЫСШИХ ГАРМОНИК В АВТОНОМНОЙ ЭНЕРГОСИСТЕМЕ

© И.В. Алферов¹, В.М. Зырянов², Н.А. Митрофанов³

¹ООО «Айроэлектро».

630102, Российская Федерация, г. Новосибирск, ул. Ипподромская, 8.

2.3Новосибирский государственный технический университет,

630073, Российская Федерация, г. Новосибирск, пр. Карла Маркса, 20.

РЕЗЮМЕ. ЦЕЛЬ. Проведение экспериментальных исследований качества электроэнергии в автономной системе электроснабжения одного из предприятий нефтегазодобывающей отрасли на шинах 0,4 кВ подстанции 6/0,4 кВ. Оценка влияния компенсирующих устройств на распределение высших гармоник в системе электроснабжения с нагрузкой, имеющей нелинейную вольт-амперную характеристику. МЕТОДЫ. Численный анализ степени искажения синусоидальности напряжения и тока в распределительной сети выполняется посредством инструментального замера: анализатором качества электроэнергии «Ресурс-UF2М» и цифровым осциллографом Hantek DSO 1102В. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Выявлены превышения допустимых значений коэффициентов искажений синусоидальности напряжений и токов, а также зависимость влияния нелинейной нагрузки и устройств компенсации реактивной мощности на гармонический состав в узлах энергосистемы. ВЫВОДЫ. Высшие гармоники тока и напряжения существенно ухудшают условия эксплуатации основных элементов силового оборудования энергосистем, негативно влияют на устройства релейной защиты, автоматики, телемеханики и связи, что в итоге нередко приводит к серьезным технологическим сбоям и значительным экономическим издержкам, учитывая неуклонный рост количества и мощности нелинейных аппаратов в электроэнергетике.

Ключевые слова: высшие гармоники, анализатор качества, гармонический состав, коэффициент искажения, частотный спектр, фильтрокомпенсирующие устройства.

Информация о статье. Дата поступления 26 июня 2018 г.; дата принятия к печати 28 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Алферов И.В., Зырянов В.М., Митрофанов Н.А. Влияние конденсаторных установок на перетоки мощности высших гармоник в автономной энергосистеме // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 95–103. DOI: 10.21285/1814-3520-2018-8-95-103

CAPACITOR UNIT EFFECT ON HIGHER HARMONICS POWER FLOW IN AN AUTONOMOUS POWER SYSTEM

I.V. Alferov, V.M. Zyryanov, N.A. Mitrofanov

"Airoelectro" LLC,

8, Ippodromskaia St., Novosibirsk, 630102, Russian Federation

Novosibirsk State Technical University,

20, K. Marks St., Novosibirsk, 630073, Russian Federation

ABSTRACT. The **PURPOSE** of the work is conducting of experimental studies of electrical energy quality in an autonomous power supply system of one of the enterprises of the oil and gas production sector on 0.4 kV buses of a 6 / 0.4 kV substation and estimation of the influence of compensating devices on the distribution of higher harmonics in the power supply system with a load having a nonlinear volt-ampere characteristic. **METHODS.** Numerical analysis of voltage and

¹Алферов Игорь Владимирович, директор, e-mail: alferov.igor1992@inbox.ru

Igor V. Alferov, Director, e-mail: alferov.igor1992@inbox.ru

²Зырянов Вячеслав Михайлович, кандидат технических наук, доцент кафедры автоматизированных электроэнергетических систем, e-mail: zvmov@ngs.ru

Vyacheslav M. Zyryanov, Candidate of technical sciences, Associate Professor of the Department of Automated Electric Energy Systems, e-mail: zvmov@ngs.ru

³Митрофанов Николай Александрович, аспирант, e-mail: n.a.mitrofanov27@gmail.com

Nikolay A. Mitrofanov, Postgraduate student, e-mail: n.a.mitrofanov27@gmail.com

Энергетика Power Engineering

current distortion degree in the distribution network is performed by instrumental measurement using Resurs-UF2M energy quality analyzer and Hantek DSO 1102B digital oscilloscope. **RESULTS AND THEIR DISCUSSION.** The study has revealed the exceedance in the permissible values of voltages and current distortion coefficients as well as the dependence of the influence of nonlinear load and reactive power compensation devices on harmonic composition in power system nodes. **CONCLUSIONS.** The higher harmonics of current and voltage significantly worsen the operating conditions of the main elements of power system equipment having a negative effect on relay protection, automation, telemechanics and communication devices that often results in serious technological failures and significant economic costs given the steady growth in the number and power of nonlinear devices in the electric power industry.

Keywords: higher harmonics, quality analyzer, harmonic composition, distortion coefficient, frequency spectrum, filter compensating devices

Information about the article. Received June 26, 2018; accepted for publication July 28, 2018; available online August 31, 2018.

For citation. Alferov V.I., Zyryanov V.M., Mitrofanov N.A. Capacitor unit effect on higher harmonics power flow in an autonomous power system. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 95–103. DOI: 10.21285/1814-3520-2018-8-95-103. (In Russian).

Введение

Несинусоидальность напряжения и тока вызывает дополнительные потери в основных силовых элементах энергосистемы, затрудняет компенсацию реактивной мощности с помощью устройств компенсации реактивной мощности (УКРМ), сокращает срок службы изоляции электрических машин, приводит к возникновению дополнительной вибрации электрических машин, снижает эффективность функционирования устройств автоматики, телемеханики и связи [1, 2].

Нарушение нормального режима работы энергосистемы обусловлено значительной перегрузкой силового оборудования токами высших гармоник (ВГ) [3]. Большая часть оборудования — трансформаторы, двигатели, батареи статических конденсаторов, кабели — рассчитаны на работу от синусоидального напряжения и, как правило, не предусматривают дополнительного воздействия токов высших гармоник [3]. На практике такие просчеты влекут за собой серьезные технологические сбои и значительные экономические издержки.

При наличии ВГ в кривой напряжения процесс старения диэлектрика в батареях конденсаторов также протекает более интенсивно, чем при работе от синусоидального напряжения. Это можно объяснить тем, что физическо-химические процессы старения в диэлектриках значительно ускоряются при высоких частотах электрического поля. старение влияет дополнительный нагрев, вызванный протеканием токов ВГ. Несмотря на то, что конденсаторные установки могут длительно работать при перегрузке током и напряжением, срок их службы в таких условиях значительно сокращается. Поток отказов конденсаторов в составе УКРМ по отношению к заявленному их сроку службы неуклонно возрастает [2].

Из вышесказанного следует, что конденсаторные батареи подлежат дополнительной защите дросселями или фильтрами высших гармоник. При выборе мощности фильтра необходимо учесть долю тока основной гармоники и токов остальных ВГ [4], которые также попадают в фильтр. Также вопрос использования силовых фильтров поднимается в [5].

Описание проблемы

В условиях эксплуатации в рассматриваемой распределительной сети при достижении необходимой степени компенсации реактивной мощности появляется до-

полнительный переток токов высших гармоник, что значительно загружает установленные на подстанциях (ПС) и у потребителей конденсаторные установки (КУ) со стороны

6 и 0,4 кВ. Возникает неустойчивая работа КУ обусловленная перегрузкой токами высших гармоник, генерируемых нелинейной нагрузкой и распространяющихся по питающей сети. Таким образом, в большей части возможных режимов КУ 0,4кВ не способны обеспечить полную компенсацию реактивной мощности в узле нагрузки. Перегрузка высшими гармониками тока конденсаторных батарей сверх допустимого значения приводит к преждевременному выходу из строя элементов конденсаторных устано-

вок. Также причиной нарушения технологического процесса является отключение автоматов при срабатывании уставки теплового расцепителя за счет термического действия токов ВГ.

Техническими условиями на эксплуатацию конденсаторных батарей предусматриваются ограничения превышения напряжения и тока сверх номинальных значений коэффициентами *си*, *сі* [3]. Исследования гармонического состава различных типов преобразователей рассмотрены в работах [6–9].

Структура электроснабжения

В рассматриваемой автономной имеются энергосистеме газопоршневая (ГПЭС) газотурбинная (ГТЭС) и электростанции, работающие на попутном газе, суммарной мощностью 170 МВт, которые обеспечивают электроэнергией всю инфраструктуру добычи и транспортировки нефти, включая жилой и административный секторы. Структура электропотребления характерна для нефтедобывающих регионов: синхронная и асинхронная нагрузка с двигателями значительной единичной мощности, с устройствами плавного пуска и частотно-регулируемыми электроприводами, выпрямительная нагрузка с устройствами подогрева скважин и станциями управления электроцентробежных насосов (ЭЦН), осветительная и бытовая. В составе энергосистемы 10 ПС 35/6 кВ и более 100 комплектных трансформаторных подстанций (КТПН).

При проектировании энергосистемы решение установки БСК на стороне 0,4 кВ для компенсации мощности является обоснованным, но при их выборе не были учтены особенности работы в условиях автономной энергосистемы: то, что в такой сети значительная часть нагрузки имеет нелинейную

вольт-амперную характеристику. В таких случаях распространено применение фильтрокомпенсирующих устройств (ФКУ), при проектировании которых суммарную емкость конденсаторов делят поровну между звеньями либо пропорционально величине гармоник тока [10].

Конденсаторные батареи в свою очередь способствуют распространению ВГ по энергосистеме. Проблема качества электроэнергии на напряжении 0,4 кВ актуальна и для городских распределительных сетей [11, 12].

Реактивное сопротивление БСК емкостного характера образует контур с индуктивным сопротивлением сети, который для основной гармоники в системе представляет значительное сопротивление. В то время как для высших гармоник сопротивление контура «БКсеть» может снижаться практически до нуля и характеризоваться только активным сопротивлением сети. В связи с возникновением такого контура высокочастотная составляющая попадает в участок сети, где установлены конденсаторные батареи. Для подтверждения вышесказанного проведена серия инструментальных замеров качества электроэнергии в узлах системы с различным составом нагрузки.

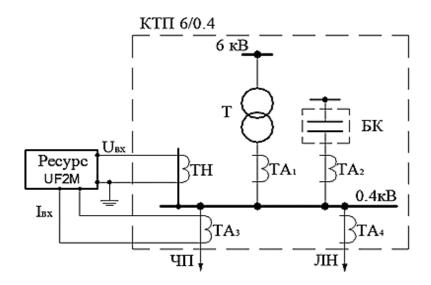
Количественный анализ степени искажений

Степень искажения кривой тока и напряжения количественно характеризуется суммарным коэффициентом гармонических составляющих и коэффициентом n-й

гармонической составляющей. Первый описывает влияние всего высокочастотного спектра высших гармоник в сети на искажение основной гармоники напряжения или

тока. Коэффициент n-й гармонической составляющей отражает долю рассматриваемой гармоники в составе кривой по отношению к основной частоте. Стандартами РФ ГОСТ 32144-2013⁴ и зарубежных стран (стандартов Австралии и США (EEEStd 519)

регламентированы допустимые значения для этих коэффициентов в энергосистеме, превышение которых приводит к значительному технологическому и экономическому ущербу.


Инструментальные замеры

Для оценки степени искажения синусоидальности напряжения и тока в распределительной сети на нескольких КТПН 6/0,4 кВ устанавливается анализатор качества электроэнергии «Ресурс-UF2M» и цифровой осциллограф Hantek DSO 1102B. Рассмотрено несколько различных вариантов расположения мест замера и состава нагрузки на секциях 0,4 кВ.

Результаты замеров на КТПН-400кВА № 1 представлены в табл. 1–3, где: $k_{\Sigma U}$ – значение коэффициента суммарного искажения синусоидальности для линейного напряжения, k_{nU} – значение коэффициентов n-й гармонической составляющей по напряжению. Аналогично в таблице отображены значения коэффициентов по току $k_{\Sigma U}$ и k_{nU} .

На рис. 1 изображена структурная схема замера, где: ЛН – линейная нагрузка; ЧП – нагрузка, запитываемая через частотный привод; БК – батарея конденсаторов.

Нагрузкой КТПН куста № 37 служат 4 станции управления насосами и 3 устройства прогрева скважин. Инструментальный замер проводился на отходящих фидерах, питающих устройства прогрева скважин (УПС) и станции управления электрическими погружными центробежными насосами (ЭЦН), на вводе в секцию 0,4 кВ и на выводах БСК. Обозначение «4ЭЦН, ЗУПС, БСК» в первой колонке «Режим нагрузки» табл. 1 показывает, что во время замера во включенном положении находилось 4 ЭЦН, З УПС, БСК.

Puc. 1. Структурная схема замера Fig. 1. Schematic diagram of measurement

⁴ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. Введен 1981–01–07. Москва: Росстандарт, 1981 / GOST 32144-2013 Electrical energy. Electromagnetic compatibility of engineering tools. Norms of electrical energy quality in general-purpose power supply systems. Introduced 1 July 1981. Moscow: Rosstandart, 1981.

Таблица 1

Инструментальный замер на КТПН (со стороны 0,4 кВ) к. № 37

Table 1

Instrumental measurement at the package transformer substation on 0.4 kV side, group no. 37

		1		, 0 ,		1		
Режим нагрузки	Узел замера	$U_{{\scriptscriptstyle AB}}, { m B/V}$	I_A , A/A	$k_{\Sigma U}, \%$	$k_{\Sigma I}$,%	P,кВт/kW	<i>Q</i> , кВар/kvar	$\cos \varphi$
_	Ввод 0,4кВ	385.4	286	16.1	43	53.2	29	0.878
4ЭЦН, 2VПС	УПС	386.9	75.5	13.3	37.5	29.7	40.2	0.594
ЗУПС, БСК	БСК	386.2	169.9	16.1	95	0.11	-110	0.001
	ЭЦН	387.2	48.2	13.4	24.5	20.9	23.5	0.664
4ЭЦН, 3УПС	Ввод 0,4кВ	376.9	390	9	17.5	53.1	61.2	0.655
	УПС	378.6	75.7	8.9	38.1	28.8	39.3	0.59
	ЭЦН	377.6	46.7	8.9	16.4	20.5	21.6	0.69
4ЭЦН, БСК	Ввод 0,4кВ	394.7	137.8	9.5	34.3	28	4.4	0.988
	БСК	395.2	123.3	9.4	54.2	0.05	-81	0.001

Таблица 2

Инструментальный замер на КТПН (со стороны 0,4 кВ) к. № 37

Table 2

Instrumental measurement at the package transformer substation on 0.4 kV side, group no. 37

Doygun Horovogu	Voor agrage	k_{nI} ,%				k_{nU} ,%		
Режим нагрузки	Узел замера	5	7	11	13	5	7	11
	Ввод 0,4кВ	35,1	16,3	15,9	4,5	14	4,4	3,2
1211H 3//EC ECK	УПС	28,4	11,2	10,1	6,8	11,8	4,3	2,5
4ЭЦН,3УПС,БСК	БСК	72,3	31	40,6	18,1	14,2	4,7	3,8
	ЭЦН	21,4	8	2	0,6	11,7	4	2,6
	Ввод 0,4 кВ	14,3	5,6	6,1	1,9	8	1,4	1,35
4ЭЦН, ЗУПС	УПС	30,5	13,4	10,4	4,6	7,8	1,38	1,36
	ЭЦН	14,7	3,2	1,5	0,7	7,7	1,3	1,2
10III ECV	Ввод 0,4 кВ	19,8	12,3	31	4,8	8,4	2,7	2,7
4ЭЦН, БСК	БСК	45,1	15,3	33,8	4,8	8,6	2,6	2,7

Значение «Ввод 0,4 кВ» во второй колонке «Узел замера» говорит о том, что прибор контроля качества электроэнергии устанавливался на вводе 0,4 кВ КТПН, питающей куст № 37. Для выявления зависимости влияния нелинейной нагрузки и устройств компенсации реактивной мощности на гармонический состав в рассматриваемом узле и на значение амплитуды гармоник проведены замеры во всех вышеописанных точках при трех режимах загрузки: полной нагрузке КТПН; при отключенных устройст-

вах прогрева скважин; при выведенной из работы конденсаторной установке.

Особенностью замера на кусте № 56 (табл. 3) является высокое содержание нелинейной нагрузки, сосредоточенной в одном месте, отсутствие на шинах комплектной подстанции устройства компенсации реактивной мощности, нагрузкой трансформаторной подстанции служат только устройства с нелинейной характеристикой, что позволяет получить четкое представление о

высокочастотном составе тока и напряжения, генерируемого такой нагрузкой.

На рис. 2 представлены осциллограммы токов на КТПН-630кВА к № 62, а в табл. 4 сведены результаты замеров пока-

зателей качества электроэнергии. В отличие от КТПН, которая питает оборудование куста № 37, на данной скважине отсутствуют ЭЦН и нелинейную нагрузку представляет всего одно устройство прогрева скважин.

Таблица 3

Инструментальный замер на КТПН (со стороны 0,4 кВ) к. № 56

Table 3

Instrumental measurement at the package transformer substation on 0.4 kV side, group no. 56

Режим нагрузки	Узел замера	U_{AB} , B/V	I_A , A/A	$k_{\Sigma U}, \%$	$k_{\Sigma I}$,%	P,кВт/kW	Q, кВар/kvar	$\cos \varphi$
4 УПС	Ввод 0,4 кВ	394,7	70	5,05	47,4	22	41	0.61
	УПС	395	70,7	5,2	45,6	0,07	-49	0,001

Puc. 2. Осциллограммы токов КТПН 6/0,4 на отходящих фидерах 0,4 кВ Fig. 2. Oscillograms of 6/0.4 package transformer substation currents on 0.4 kV outgoing feeders

Таблица 4

Инструментальный замер на КТПН (со стороны 0,4 кВ) к. № 62

Table 4

Instrumental measurement at package transformer substation on 0.4 kV side, group no. 62

Режим нагрузки	Узел замера	U_{AB} , B/V	I_A , A/A	$k_{\Sigma U}, \%$	$k_{\Sigma I}$,%	P,κBτ/kW	Q, кВар/kvar	$\cos \varphi$
УПС, БСК	УПС	394,7	70	5,05	47,4	22	41	0.68
YIIC, BCK	БСК	395	70,7	5,2	45,6	0,07	-49	0,001
УПС	УПС	392,7	68,4	4	48,7	21,2	40,6	0,65
БСК	БСК	397	71,1	3,87	25,7	0,07	49,6	0,001

Заключение

На выводах БСК наблюдаются значительные искажения синусоидальности напряжения и тока, причем если в остальных узлах замера нечетные и не кратные трем гармоники с ростом частоты затухают,

то в узле с конденсаторными батареями значения 5, 7, 11, 13-х гармоник имеют большой удельный вес по отношению к основной частоте.

Проведенные опыты по замерам качества электроэнергии показывают, что наличие конденсаторных батарей в узлах с нелинейной нагрузкой приводит к ухудшению синусоидальности тока и напряжения (табл. 1, 2). Стоит отметить, что коэффициент суммарного искажения на вводе 0,4 кВ при работе БСК возрастает более чем в 2 раза по сравнению с режимом, где конденсаторная установка отключена.

При отключении от секции 0,4 кВ устройства прогрева скважин (источника помех) снижение коэффициента суммарного искажения и коэффициента п-й гармонической составляющей в общем случае составляет примерно 25% по сравнению с режимом работы с нелинейной нагрузкой. Следует подчеркнуть, что в нормальном режиме без участия нагрузки с нелинейной веберамперной характеристикой гармонические искажения должны практически отсутствовать или в пределе не превышать требований ГОСТ. Таким образом, даже при отсутствии источника нелинейных искажений, ввиду изменения сопротивления контура «БК-сеть» при коммутации ступеней БК, в данном узле искажения присутствуют и превышают требуемые стандартом значения.

Заметим, что значение $tg\varphi$ на вводе 0,4 кВ при включенном УКМ составляет $tg\varphi=0,56$, что является недопустимым значением в условиях компенсации, вызванным, как уже упоминалось выше, невозможностью одновременного подключения большего числа ступеней из-за перегрузки УКМ. Недокомпенсация влечет за собой дополнительные потери в сети, а, следовательно, и повышенные экономические затраты.

С ростом доли подключенной нелинейной нагрузки возрастают искажения кривой напряжения и тока, причем в большей степени этот фактор сказывается на искажении характеристики тока, в то время как подключение конденсаторных батарей при сравнении в узлах с приблизительно равной величиной нелинейной нагрузки оказывает значительное влияние на форму тока и напряжения.

При замере в узлах, где отсутствуют

БК или доля нагрузки с тиристорным управлением мала, коэффициент суммарного искажения по напряжению не превышает нормированного стандартом значения.

Помимо проблем с работой устройств компенсации реактивной мощности гармонические искажения негативно влияют на условия эксплуатации устройств прогрева скважин, дополнительная загрузка токами ВГ вызывает перегрузку установок и, как следствие, сбои в работе. Отключение УПС или их неустойчивое функционирование, в свою очередь ухудшают производительность добычи нефти (дебит нефти), так как в зимний период скважины запарафиниваются и снижается скорость перекачки.

Нарушение технологического процесса в связи с наличием высших гармоник в системе помимо потерь мощности, снижения производительности добычи нефти и возможной ее локальной остановки сопровождается авариями, приводящими к порче оборудования. Применительно к БСК 0,4 кВ выходят из строя питающие автоматы, перегрузка токами ВГ сопровождается вздутием и взрывом конденсаторных банок. В результате чего на время ремонта установка находится в выключенном состоянии, следовательно, в этот интервал времени организация несет убытки от дополнительных потерь электроэнергии, вызванных перетоком реактивной мощности к потребителю. В случае БСК, установленных на секциях 6 кВ, наблюдаются пробои изоляции кабельных вставок и перегорание предохранителей, защищающих установку.

В совокупности зафиксировано более 100 аварийных событий, связанных с работой устройств компенсации. Большая часть неисправностей вызвана вздутием и взрывами конденсаторных батарей и выходом из строя автоматов нагрузки.

На основании полученных результатов аварийных событий можно судить о необходимости принятия мер по ограничению высших гармоник в сети. В [13, 14] предложены критерии, определяющие эффективность ослабления высших гармоник тока и напряжения. Оптимальным в рассматри-

ваемом примере является применение силовых фильтров на базе уже установленных конденсаторных батарей. Дополнение эксплуатируемых БСК дросселями упростит

этапы введения оборудования в эксплуатацию. Также повысится надежность работы и произойдет разгрузка БСК по токам ВГ, в результате чего увеличится их срок службы.

Библиографический список

- 1. Жежеленко И.В. Высшие гармоники в системах промышленного электроснабжения промпредприятий; 4-е изд., перераб. и доп. М.: Энергоатомиздат, 2000. 331 с.
- 2. Вольдек А.И. Электрические машины. 3-е изд., перераб. Л.: Энергия, 1978. 832 с.
- 3. Жежеленко И.В., Саенко Ю.Л. Показатели качества электроэнергии и их контроль на промышленных предприятиях; 3-е изд., перераб. и доп. М.: Энергоатомиздат, 2000. 252 с.
- 4. Боярская Н.П., Довгун В.П., Шевченко Е.С., Егоров Д.Э. Широкополосные фильтры гармоник // Ползуновский вестник. 2013. № 4–2. С. 34–38.
- 5. Митрофанов Н.А. Использование силовых фильтров для ограничения высших гармоник в сети // Наука. Технологии. Инновации: сб. научных трудов: в 9 ч. Новосибирск, 2015. Ч. 4. С. 35–37.
- 6. Зырянов В.М., Митрофанов Н.А., Соколовский Ю.Б. Анализ гармонического состава тока и напряжения на шинах 0,4 кВ КТПН и применение устройств ограничения высших гармоник // Вестник Иркутского государственного технического университета. 2016. № 2. С. 61–68.
- 7. Зырянов В.М., Митрофанов Н.А., Соколовский Ю.Б. Исследование гармонического состава напряжения преобразователя частоты // Вестник Ивановского государственного энергетического университета. 2015. № 1. С. 24–29.
- 8. Зырянов В.М., Митрофанов Н.А., Соколовский Ю.Б. Анализ гармонического состава напряжения ча-

- стотного электропривода // Научные проблемы транспорта Сибири и Дальнего Востока. 2015. № 1. С. 154–159.
- 9. Митрофанов Н.А. Анализ гармонического состава напряжения преобразователя частоты MITSUBISHI FR-A540ECR // Электротехника. Электротехнология. Энергетика: тр. VII Междунар. науч. конф. молодых ученых (г. Новосибирск, 9–12 июня 2015 г.). Новосибирск: Изд-во НГТУ, 2015. Ч. 3. С. 71–74.
- 10. Das J. Passive filters potentialities and limitations. IEEE trans. on industry applications. Vol. 40, No. 1, January/February. 2004. P. 232–241.
- 11. Боярская Н.П., Кунгс Я.А., Темербаев С.А., Довгун В.П., Синяговский А.Ф. Проблемы обеспечения качества электроэнергии в городских распределительных сетях 0,4 кВ // Ползуновский вестник. 2012. № 4. С. 89–94.
- 12. Скакунов Д.А. Методы и средства обеспечения качества электрической энергии в распределительных сетях 0,4–6 кВ Ачинского НПЗ // Мир нефтепродуктов. Вестник нефтяных компаний. 2012. № 7. С. 37–42.
- 13. Ginn H. L., Czarnecki L. S. An optimization based method for selection of resonant harmonic filter branch parameters. IEEE transactions on power delivery. 2006. Vol. 21. No. 3. P. 1445–1451.
- 14. Maza Ortega J. M., Paian M. B., Mitchell C. I. A new design method of passive tuned filters for harmonic mitigation and reactive power compensation. European transactions on electrical power. 2006; 16. P. 219–233.

References

- 1. Zhezhelenko I.V. *Vysshie garmoniki v sistemakh promyshlennogo elektrosnabzheniya prompredpriyatii* [Higher harmonics in power supply systems of industrial enterprises]. Moscow: Energoatomizdat Publ., 2000, 331 p. (In Russian).
- 2. Vol'dek A.Í. *Elektricheskie mashiny* [Electrical machines]. Leningrad: Energiya Publ., 1978, 832 p. (In Russian).
- 3. Zhezhelenko I.V., Saenko Yu.L. *Pokazateli kachestva elektroenergii i ikh kontrol' na promyshlennykh predpriyatiyakh* [Indicators of electrical energy quality and their control at industrial enterprises]. Moscow: Energoatomizdat Publ., 2000, 252 p. (In Russian).
- 4. Boyarskaya N.P., Dovgun V.P., Shevchenko E.S., Egorov D.E. Wide band power harmonic filters. *Polzunovskij vestnik* [Polzunovsky Vestnik], 2013, no. 4–2, pp. 34–38. (In Russian).
- 5. Mitrofanov N.A. *Ispol'zovanie silovyh fil'trov dlya ogra*nicheniya vysshih garmonik v seti [Use of power filters to limit higher harmonics in network]. *Nauka. Tekhnologii.*

- Innovacii: sbornik nauchnyh trudov: 9 chast. [Science. Technologies. Innovations: Collection of scientific works: 9th part]. Novosibirsk: NSTU Publ., 2015. Part 4. 35–37 p. (In Russian).
- 6. Zyryanov V.M., Mitrofanov N.A., Sokolovskij Yu.B. Analysis of current and voltage harmonic composition on 0.4 kV busbars of package transformer substations and the use of higher harmonics restraint devices. *Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta* [Proceedings of Irkutsk State Technical University], 2016, no. 2. 61–68 p. (In Russian).
- 7. Zyryanov V.M., Mitrofanov N.A., Sokolovskij Yu.B. Research of voltage harmonic contain in frequency converter. Vestnik Ivanovskogo gosudarstvennogo ehnergeticheskogo universiteta [Vestnik IGEU], 2015, no. 1, 24–29 p. (In Russian).
- 8. Zyryanov V.M., Mitrofanov N.A., Sokolovskij Yu.B. Research of voltage harmonic contain in frequency converter. *Nauchnye problemy transporta Sibiri i Dal'nego Vostoka* [Scientific problems of Transport in Siberia and

ЭнергетикаPower Engineering

the Far East], 2015, no. 1, 154-159 p. (In Russian).

- 9. Mitrofanov N.A. Analiz garmonicheskogo sostava napryazheniya preobrazovatelya chastoty MITSUBISHI FR-A540ECR [Analysis of harmonic composition of voltage of frequency converter MITSUBISHI FR-A540ECR]. Trudy VII Mezhdunarodnoj nauchnoj konferencii molodyh uchenyh "Ehlektrotekhnika. Ehlektrotekhnologiya. Ehnergetika" [Proceedings of VII International scientific conference of young scientists "Electrical Engineering. Electrical Technology. Power Engineering", Novosibirsk, 9–12 June 2015]. Novosibirsk, 2015, part 3, pp. 71–74. (In Russian).
- 10. Das J. Passive filters potentialities and limitations. IEEE trans. on industry applications, 2004, vol. 40, no. 1, January/February, pp. 232–241.
- 11. Boyarskaya N.P., Kungs YA.A., Temerbaev S.A., Dovgun V.P., Sinyagovskij A.F. Problems of ensuring

Критерии авторства

Алферов И.В., Зырянов В.М., Митрофанов Н.А. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

- electrical energy quality in urban distribution networks of 0.4 kV. *Polzunovskij vestnik* [Polzunovsky Vestnik], 2012. no. 4, pp. 89–94. (In Russian).
- 12. Skakunov D.A. Methods and means of ensuring electrical energy quality in the distribution networks of 0.4-6 kV of Achinsk oil refinery. *Mir nefteproduktov. Vestnik neftyanyh kompanij* [World of Oil Products. The Oil Companies' Bulletin], 2012, no. 7, pp. 37–42. (In Russian).
- 13. Ginn H. L., Czarnecki L. S. An optimization based method for selection of resonant harmonic filter branch parameters. IEEE transactions on power delivery, 2006, vol. 21, no. 3, pp. 1445–1451.
- 14. Maza Ortega J. M., Paian M. B., Mitchell C. I. A new design method of passive tuned filters for harmonic mitigation and reactive power compensation. European transactions on electrical power. 2006, 16, pp. 219–233.

Authorship criteria

Alferov V.I., Zyryanov V.M., Mitrofanov N.A. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Энергетика Power Engineering

Оригинальная статья / Original article УДК 621.311.001

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-104-113

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ МАГНИТНОГО ГИСТЕРЕЗИСА, БАЗИРУЮЩАЯСЯ НА ТЕОРИИ ПРЕЙЗАХА

© М.В. Андреев¹, М.В. Спица², А.В. Киевец³

Национальный исследовательский Томский политехнический университет, 634050, Российская Федерация, г. Томск, пр. Ленина, 30.

РЕЗЮМЕ. ЦЕЛЬ. В условиях постоянного усложнения электроэнергетических систем все более актуальной становится задача обеспечения адекватности функционирования устройства релейной защиты. Для ее решения авторы предлагают использовать детализированные математические модели совокупности измерительных трансформаторов релейной защиты совместно с современными симуляторами электроэнергетических систем. Очень важным является адекватное моделирование измерительных трансформаторов, в частности процесса намагничивания сердечника, поскольку измерительные трансформаторы во многом определяют форму контролируемого сигнала релейной защиты и влияют на ее работу. Однако, ввиду отсутствия точного математического описания характеристики намагничивания сердечника измерительного трансформатора, в настоящее время используются упрощенные модели, не отражающие всех протекающих в сердечнике процессов. Целью работы является разработка математической модели гистерезиса, обладающая высокой точностью воспроизведения процессов перемагничивания сердечника трансформатора. МЕТОДЫ. Основным методом исследования является математическое моделирование процессов перемагничивания ферромагнитного материала. Для проведения исследований использовался программный комплекс MathCAD. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. В статье представлены фрагменты разработки и исследования математической модели с памятью магнитного гистерезиса, базирующейся на теории Прейзаха, адекватно воспроизводящей как предельные, так и частные петли гистерезиса. ВЫВОДЫ. Анализ существующих математических моделей трансформаторов тока позволил выявить наиболее перспективный подход для описания процесса намагничивания – теория Прейзаха, которая из-за сложности реализации в распространенных программных и программно-аппаратных комплексах не применяется. На основе теории Прейзаха для описания процесса магнитного гистерезиса была разработана математическая модель гистерезиса с памятью состояния вещества и проведены предварительные исследования данной модели, подтвердившие правильность ее работы.

Ключевые слова: релейная защита, магнитный гистерезис, инверсная модель гистерезиса, теория Прейзаха, предельная петля гистерезиса, частная петля гистерезиса.

Информация о статье. Дата поступления 05 июня 2018 г.; дата принятия к печати 23 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Андреев М.В., Спица М.В., Киевец А.В. Математическая модель магнитного гистерезиса, базирующаяся на теории Прейзаха // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 104–113. DOI: 10.21285/1814-3520-2018-8-104-113

MATHEMATICAL MODEL OF PREISACH THEORY-BASED MAGNETIC HYSTERESIS

M.V. Andreev, M.V. Spitsa, A.V. Kievets

National Research Tomsk Polytechnic University, 30, Lenin pr., Tomsk, 634050, Russian Federation

¹Андреев Михаил Владимирович, кандидат технических наук, заведующий научно-исследовательской лабораторией моделирования электроэнергетических систем Инженерной школы энергетики, e-mail: andreevmv@tpu.ru Mikhail V. Andreev, Candidate of technical sciences, Head of the Research Laboratory for Electrical Power System Simulation of the Power Engineering School, e-mail: andreevmv@tpu.ru

²Спица Мария Владимировна, магистрант, e-mail: mariya.spica@mail.ru

Maria V. Spitsa, Master's degree student, e-mail: mariya.spica@mail.ru

³Киевец Антон Владимирович, аспирант, e-mail: kievec.v.l@gmail.com

Anton V. Kievets, Postgraduate, e-mail: kievec.v.l@gmail.com

Энергетика Power Engineering

ABSTRACT. PURPOSE. As the complexity of electric power systems (EPS) constantly increases, the task of ensuring adequate operation of relay protection devices (RP) is becoming more and more relevant. To solve it the authors propose to use the detailed mathematical models of the combination of measuring transformers of relay protection together with modern EPS simulators. The adequate modeling of measuring transformers is very important, in particular, the core magnetization process, since measuring transformers in many respects determine the shape of the controlled signal of relay protection and affect its operation. However, the absence of an accurate mathematical description of the characteristics of measuring transformer core magnetization leads to the use of simplified models which do not reflect all processes in the core. The purpose of the work is development of a mathematical model of hysteresis featuring high reproduction accuracy of transformer core magnetization reversal processes. METHODS. The main research method is mathematical modeling of ferromagnetic material magnetization reversal. The research is performed using the MathCAD software package. RE-SULTS AND THEIR DISCUSSION. The article presents the fragments of development and study of a mathematical model with a magnetic hysteresis memory based on the Preisach theory, which reproduces both major and minor hysteresis loops with high accuracy. CONCLUSIONS. The analysis of existing mathematical models of current transformers allowed to identify the most promising approach for describing the magnetization process i.e. Preisach theory, which, due to the complexity of its implementation is not used in widely spread software and hardware/software complexes. A mathematical model of a hysteresis with the memory of matter state has been developed on the basis of the Preisach theory for describing the magnetic hysteresis process. The preliminary studies of the model confirmed the correctness of model operation. Keywords: relay protection, magnetic hysteresis, inverse hysteresis model, Preisach theory, major hysteresis loop, minor hysteresis loop

Information about the article. Received June 05, 2018; accepted for publication July 23, 2018; available online August 31, 2018.

For citation. Andreev M.V., Spitsa M.V., Kievets A.V. Mathematical model of Preisach theory-based magnetic hysteresis. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 104–113. DOI: 10.21285/1814-3520-2018-8-104-113. (In Russian).

Введение

Во избежание повреждения дорогостоящего электротехнического оборудования и развития системных аварий необходимо применять устройства релейной защиты и автоматики (РЗА). Правильное функционирование устройств релейной защиты зависит от формы кривых переменного тока и напряжения, снимаемых со вторичной обмотки трансформаторов тока и напряжения, которые являются основными датчиками контролируемых величин энергообъектов.

В силу этого необходимо адекватно учитывать искажение сигнала во вторичной обмотке измерительных трансформаторов. Основной причиной искажения сигнала, снимаемого со вторичной обмотки измерительного трансформатора (ИТ), является насыщение его магнитопровода, чему в большей степени подвержен трансформатор тока.

Математическая модель трансформатора может быть представлена системой уравнений:

$$\begin{cases} u_{2} = w_{2} \cdot s_{c} \cdot \frac{dB}{dt} = r_{2} \cdot i_{2} + L_{2} \cdot \frac{di_{2}}{dt}; \\ w_{1} \cdot i_{1} - w_{2} \cdot i_{2} = l_{c} \cdot H; \\ B = f(H), \end{cases}$$
(1)

где: $r_2 = R_{06} + R_{\rm H}$ — активное сопротивление со стороны вторичной обмотки; $L_2 = L_{06} + L_{\rm H}$ — индуктивность со стороны вторичной обмотки; R_{06} , L_{06} — активное сопротивление и индуктивность вторичной обмотки; $R_{\rm H}$, $L_{\rm H}$ — активное сопротивление и индуктивность нагрузки; $s_{\rm C}$ — сечение стали магнитопровода; $l_{\rm C}$ — средняя длина силовой линии магнитного поля; $i_{\rm H}$, $i_{\rm C}$ — первичный и вторичный токи TT; w1, w2 — число витков первичной и вторичной обмоток соответственно; B — магнитная индукция; B — напряженность магнитного поля; B = f(B) — характеристика намагничивания сердечника трансформатора.

Постановка проблемы. Главной проблемой является отсутствие точного математического описания характеристики намагничивания сердечника измерительного трансформатора тока, без которой невозможно теоретически оценить степень искажения сигнала, снимаемого со вторичной обмотки измерительного трансформатора устройствами релейной защиты.

Получить эту характеристику с высокой точностью можно только эмпирическим

путем. Пользоваться эмпирическими методами для оценки искажения сигнала измерительным трансформатором нецелесообразно, т.к. это требует много времени и ресурсов. В силу этого широко используются математические модели, основанные как на методах аппроксимации, так и на различных теориях гистерезиса.

Еще более актуальной проблему отсутствия точного математического описания гистерезиса делает активное внедрение микропроцессорных (МП) устройств РЗА и усложнение алгоритмов защиты с целью повышения их эффективности. Данные факторы в свою очередь приводят к усложнению анализа корректности работы устройств РЗА в различных режимах работы энергосистем и, как следствие, к необходимости применения моделей, описывающих поведение измерительных трансформаторов наиболее адекватно.

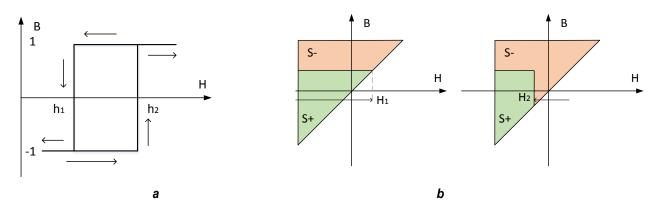
На данный момент широкое распространение получила апробация алгоритмов функционирования устройств РЗА при помощи математического моделирования, в частности — при помощи программно-аппаратных комплексов (ПАК) моделирования псевдо-реального и реального времени. В данных комплексах используются модели, основанные на аппроксимации кривой намагничивания, работах профессора Г. Доммеля [1], формуле Фрелиха [2] и усовершенствованных математических моделях ферромагнитного гистерезиса Джайлза-Атертона.

Все эти модели имеют ряд суще-

ственных недостатков и ограниченную область применения. Например, модель, базирующаяся на формуле Фрелиха, может быть использована только в области сильных полей при условии, что магнитная индукция и напряженность магнитного поля не меняют знака [2]. Классическая модель Джайлза-Атертона имеет довольно низкую точность определения данных в области насыщения и частных петель гистерезиса частные петли гистерезиса, построенные при помощи этой модели, получаются искаженными и могут выходить за пределы предельной петли гистерезиса [3]. Также известным недостатком данного метода является то, что у петель гистерезиса может наблюдаться отрицательный наклон - при увеличении магнитного поля уменьшается его индукция, что подробно рассмотрено в [3]. К тому же все эти модели имеют очень большую погрешность – от 15 до 30% [4-6]. Широкое их применение при наличии таких существенных недостатков обусловлено малым количеством вычислительных ресурсов, требующихся для их реализации.

Цель исследования. В настоящее время модели гистерезиса с памятью (воспроизводящие историю намагничивания) чаще всего разрабатываются в рамках Прейзаховского подхода. Данный метод обладает довольно высокой точностью при высокой сложности. Целью работы является разработка математической модели гистерезиса, обладающая высокой точностью воспроизведения процессов перемагничивания сердечника трансформатора.

Материалы и методы исследования


Теория Прейзаха [7–14] рассматривает магнитный материал как совокупность диполей (гистеронов), каждый из которых описывается прямоугольной петлей гистерезиса (рис. 1 а), определенной двумя независимыми параметрами. Посредством распределения данных параметров между диполями возможно математическое описание (2) гистерезиса магнитомягких и магнитотвердых материалов как функции от напряженности магнитного поля:

$$B(t) = \iint_{S} \mu(h_1, h_2) \gamma(h_1, h_2, H(t)) dh_1 dh_2,$$
 (2)

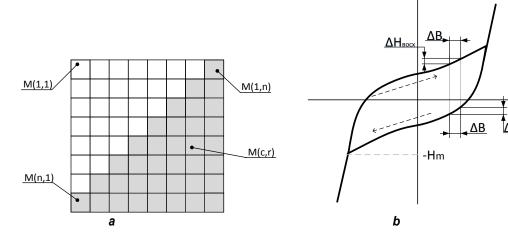
где: S — площадь треугольника Прейзаха; $\mu(h_1,h_2)$ — функция распределения частиц Прейзаха; $\gamma\big(h_1,h_2,H(t)\big)$ — характеристика гистерезиса одного элементарного участка.

Функция распределения частиц Прейзаха $\mu(h_1,h_2)$ является неотрицательной весовой функцией, представляющей веса каждого гистерона в плоскости Прейзахова пространства S (рис. 1 b). Прейзахово

Puc. 1. Характеристика гистерезиса одного гистерона (а); принцип изменения состояния Прейзахова пространства (b) Fig. 1. Characteristic of hysteresis of one hysterone (a); principle of Preisach space state variation (b)

пространство может быть разбито на два участка: S+, в котором все гистероны имеют значение +1, и S-, где гистероны имеют значение -1.

Наиболее удобным представляется реализовать модель в дискретном виде. В таком случае система уравнений (1) примет вид:


$$\begin{cases} t_{i+1} = t_i + \Delta t; \\ i_{2i+1} = \frac{w_1}{w_2} i_{1i+1} - \frac{l_c}{w_2} H_i; \\ B_{i+1} = k_i \cdot i_{2i} (t_{i+1} - t_i) + k_2 (i_{2i+1} - i_{2i}) + B_i; \\ H_{i+1} = f(B_{i+1}). \end{cases}$$
(3)

Как видно из системы уравнений (3), входной величиной модели является магнитная индукция В, а выходной – напряжен-

ность магнитного поля H, то есть необходимо инвертировать модель. Также необходимо отойти от интегрального характера модели и представить функцию распределения гистеронов в дискретном виде.

Треугольник Прейзаха в математических моделях реализуют как матрицу размера n×n, где половина значений, ограниченная треугольником, представляет собой значения функции распределения (закрашенная часть на рис. 2 а, и где вторая половина — нулевые значения.

Функция распределения частиц Прейзаха определяется эмпирически. Определить ее вид можно на основании приведенных в справочных данных трансформатора типовых кривых намагничивания (рис. 2 b).

Puc. 2. Прейзахово распределение (a); петля гистерезиса (b) Fig. 2. Preisach distribution (a); hysteresis loop (b)

Матрица заполняется при условии, что изменение магнитной индукции для каждого столбца/строки постоянно: $\Delta B = const.$ Необходимо знать величину изменения напряженности магнитного поля при изменении магнитной индукции на постоянную величину для восходящей и нисходящей ветвей петли гистерезиса — $\Delta H_{\rm восх}$, $\Delta H_{\rm нисx}$.

Значения элементов матрицы должны удовлетворять следующим условиям:

$$\begin{cases} \Delta H_{\text{BOCX}}(r) = \sum_{c=1}^{r} M(c, r); \\ \Delta H_{\text{HMCY}}(c) = \sum_{r=c}^{k} M(c, r). \end{cases}$$
(4)

Значит, сумма элементов столбца r должна составлять величину $\Delta H_{\rm Bocx}$, а сумма элементов строки $c-\Delta H_{\rm Hucx}$. При этом k- линия поворота, т.е. номер столбца, соответствующего величине магнитной индукции B, при которой магнитная индукция перестала возрастать и начала убывать.

Определить значения функции распределения можно итерационным методом. В основу определения функции распределения гистеронов был положен метод, представленный в [15]. Данный метод был переработан для возможности его использования в инверсной модели гистерезиса. Начальное значение элементов матрицы можно определить, например, таким образом:

$$M(c,r) = \begin{cases} H_{\text{ампл}} / n(n+1) & \text{if } n+1-c \ge r; \\ 0 & \text{if } n+1-c < r, \end{cases}$$
 (5)

где $H_{\text{ампл}}$ – удвоенное значение предельной напряженности магнитного поля H_{m} .

Значение элементов матрицы уточняется для каждого элемента \boldsymbol{c} по следующему выражению:

$$M_{\text{уточн}}(c,r) = M(c,r) + \frac{\Delta H_{\text{BOCX}}(r) - \sum_{c=n-r+1}^{n} M(c,r)}{r}$$
(6)

Если значение элемента получается $M_{
m yточн}(c,r) < 0$, тогда оно принимается равным нулю. Затем уточненную матрицу необходимо принять, как $M_{
m yточн}(c,r) = M(c,r)$ и продолжить расчет.

Значение элементов матрицы уточ-

няется для каждого элемента r по следующему выражению:

$$M_{\text{уточн}}(c,r) = M(c,r) +$$

 $+ \frac{\Delta H_{\text{нисx}}(c) - \sum_{r=n-c+1}^{n} M(c,r)}{c}.$ (7)

Если значение элемента получается $M_{
m yточн}(c,r) < 0$, тогда оно принимается равным нулю. Затем уточненную матрицу необходимо принять, как $M_{
m yточн}(c,r) = M(c,r)$ и продолжить расчет.

В качестве критерия правильности решения можно воспользоваться методом оптимизации Левенберга-Марквардта: данные операции необходимо продолжать до тех пор, пока величина χ (8) не станет меньше, чем желаемое значение погрешности:

$$\begin{array}{c} \chi = \sum_{r=1}^{n} [\Delta H_{\text{BOCX}}(r) - \\ \sum_{c=n-r+1}^{n} M(c,r)]^2 + \sum_{c=1}^{n} [\Delta H_{\text{HUCX}}(r) - \\ \sum_{r=1}^{n-c+1} M(c,r)]^2. \end{array} \tag{8}$$

Таким образом, в модели, созданной на базе теории Прейзаха, напряженность магнитного поля *H* будет меняться в соответствии со следующим алгоритмом:

- 1. Каждое значение B_i , рассчитанное по соответствующему выражению системы уравнений (2), округляется до ближайшего дискретного значения B_i , которому соответствуют определенная строка c_i и столбец r_i матрицы Прейзахова распределения.
- 2. В соответствии с характером изменения магнитной индукции напряженность магнитного поля будет меняться следующим образом:

$$if B_{j+1} > B_{j} \begin{cases} c_{j+1} = c_{j} + 1; \\ r_{j+1} = r_{j} + 1; \\ \Delta H_{\text{BOCX } j+1} = \sum_{c=1}^{L_{l}} M(c, r_{j+1}); \\ H_{i+1} = H_{j+1} = H_{j} + \Delta H_{\text{BOCX } j+1}. \end{cases}$$
(9)

if
$$B_{j+1}$$

$$< B_{j} \begin{cases} c_{j+1} = c_{j} - 1; \\ r_{j+1} = r_{j} - 1; \end{cases}$$

$$\Delta H_{\text{HUCX } j+1} = \sum_{r=c_{j+1}}^{K_{l}} M(n - c_{j+1}, r);$$

$$H_{i+1} = H_{j+1} = H_{j} - \Delta H_{\text{HUCX } j+1}.$$

При этом линии поворота M_l и K_l меняют свои значения в тот момент, когда изменение магнитной индукции меняет характер своей динамики.

Значения M_i фиксируются и сохраняются в памяти алгоритма, когда магнитная индукция принимает некоторое значение B_i и после этого меняет свой характер с убывающего на возрастающий:

$$L_0 = n;$$

$$L_l = r_j = const.$$
 (10)

 M_l стирается из памяти алгоритма и принимает предыдущее значение, когда соблюдается условие:

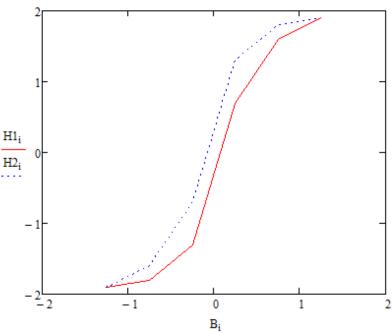
$$r_{j+1} > L_l => L_l = L_{l-1}.$$
 (11)

Значения K_l фиксируются и сохраняются в памяти алгоритма, когда магнитная индукция принимает некоторое значение B_j и после этого меняет свой характер с возрастающего на убывающий:

$$K_0 = n;$$

$$K_l = c_j = const.$$
(12)

 K_l стирается из памяти алгоритма и принимает предыдущее значение, когда соблюдается условие:

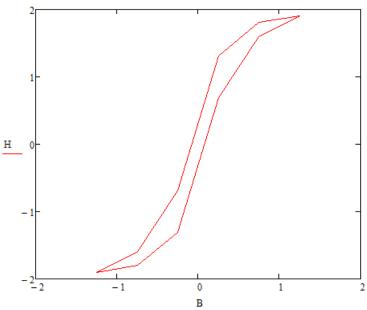

$$c_{i+1} < K_i => K_i = K_{i-1}.$$
 (13)

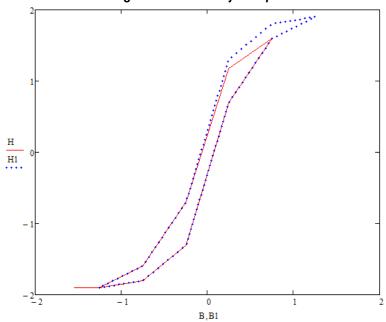
Результаты исследования и их обсуждение

Данная модель была реализована в электронной среде Mathcad. В силу специфики работы данной среды модель претерпела ряд изменений, связанных с особенностями нумерации массивов: нумерация в Mathcad начинается не с единицы, как представлено в модели выше, а с нуля. Также модель была представлена в статическом виде, т.е. ее функционирование возможно только при условии, что характер изменения

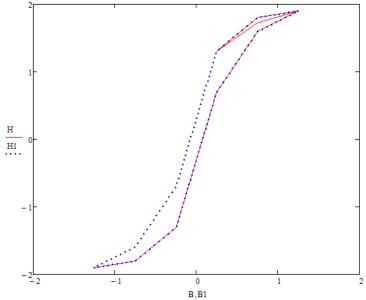
магнитной индукции известен изначально.

В качестве примера была построена предельная петля и частные петли для характеристики гистерезиса, обладающие следующей предельной петлей, представленной на рис. 3. Петля была разбита на пять дискретных участков. Изменение магнитной индукции для каждого участка постоянно и составляет $\Delta B = 0.5 \, \mathrm{T}_{\pi}$.


Puc. 3. Исходная предельная петля Fig. 3. Initial major loop


Функция распределения частиц Прейзаха была определена как матрица размером 5×5 и рассчитана по формулам (5)–(7). Погрешность была определена по формуле (8) и составила $\chi=0,674$ о. е. Итоговый вид матрицы функции распределения:

$$M = \begin{bmatrix} 0 & 0 & 0 & 0 & 0,1 \\ 0 & 0 & 0 & 0,425 & 0,075 \\ 0 & 0 & 1,389 & 0,48 & 0,131 \\ 0 & 0,423 & 0,479 & 0 & 0 \\ 0,099 & 0,074 & 0,13 & 0 & 0 \end{bmatrix}$$


Полученная в результате моделирования предельная петля (рис. 4) практически не отличается от исходной: среднее отклонение расчетной величины от исходной составляет 0,0022 А/м. Частные петли (рис. 5 и 6) не выходят за предельные, однако оценить насколько искаженными получаются частные петли невозможно без экспериментальных данных.

Puc. 4. Смоделированная предельная петля Fig. 4. Simulated major loop

Puc. 5. Смоделированная частная петля Fig. 5. Simulated minor loop

Puc. 6. Смоделированная частная петля Fig. 6. Simulated minor loop

Выводы

- 1. Проблема полного и достоверного моделирования трансформаторов тока до сих пор актуальна, о чем свидетельствует множество работ в данном направлении. Ее решение откроет новые уникальные возможности на пути создания адекватных математических моделей РЗА, которые, как указывали авторы [16–18], могут быть эффективно использованы для задач проектирования, исследования и настройки устройств автоматики и защиты.
- 2. Анализ существующих математических моделей трансформаторов тока позволил выявить наиболее перспективный подход для описания процесса намагничивания теория Прейзаха, которая, однако, ввиду сложности реализации в распространенных программных и программно-аппаратных комплексах не применяется.
 - 3. На основе теории Прейзаха для

- описания процесса магнитного гистерезиса была разработана математическая модель гистерезиса с памятью состояния вещества и проведены предварительные исследования данной модели, подтвердившие правильность ее работы.
- 4. Дальнейшие исследования будут направлены на разработку полной математической модели трансформатора тока и ее адаптацию для Всережимного моделирующего комплекса реального времени электроэнергетических систем (ВМК РВ ЭЭС) [19, 20], разработанного в Томском политехническом университете. ВМК РВ ЭЭС позволит реализовать разрабатываемую модель в полном объеме без ограничения и упрощения моделей основного оборудования.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 16-38-60043 мол а дк.

Библиографический список

- 1. Hermann W. Dommel. Digital computer solution of electromagnetic transients in single- and multiphase networks // IEEE Transactions on Power Apparatus and Systems. 1969. Vol. 88. No. 4. P. 388–399.
- 2. Матюк В.Ф., Осипов А.А. Математические модели кривой намагничивания и петель магнитного гистерезиса. Ч. І. Анализ моделей // Неразрушающий контроль и диагностика. 2011. № 2. С. 3–35.
- 3. Deane J.H.B. Modeling the dynamics of nonlinear inductor circuits. IEEE Transactions on Magnetics. 1994. Vol. 30. Issue 5. P. 1–13.
- 4. Наумов В.А, Шевцов В.М. Математические модели трансформатора тока в исследованиях алгоритмов дифференциальных защит // Электрические станции. 2003. № 3. С. 51–56.
- 5. Новаш И.Ф., Румянцев Ю.Ф. Упрощенная модель

- трехфазной группы трансформаторов тока в системе динамического моделирования // Энергетика. Известия высших учебных заведений и энергетических объединений СНГ. 2015. № 5. С. 23–38.
- 6. Король Е.Г. Анализ методов моделирования петли гистерезиса ферромагнитных материалов // Електротехніка і Електромеханіка. 2007. № 6. С. 44–47.
- 7. Preisach F., Fur Z. Phys. 94, 277 (1935).
- 8. Eichler Ja., Novák M., Košek M. Differences between Preisach Model and Experiment for Soft Ferromagnetic Materials, Effect of Instrument Accuracy // IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM). 2017.
- 9. Willerich S., Herzog H.-G. Interpretation of an Energy Based Hysteresis Model as a Scalar Preisach Operator // IEEE Conference on Electromagnetic Field Computation (CEFC). 2016. P. 13.
- 10. Tousignant M., Sirois F., Kedous-Lebouc A. Identification of the Preisach Model Parameters Using Only The Major Hysteresis Loop and The Initial Magnetization Curve // IEEE Conference on Electromagnetic Field Computation (CEFC). 2016. P. 11.
- 11. Anooshahpour F., Polushin I.G., Patel R.V. Classical Preisach Model of Hysteretic Behavior in a da Vinci Instrument // IEEE International Conference on Advanced Intelligent Mechatronics (AIM). 2016. P. 1392–1397.
- 12. Eichler J., Novák M., Košek M. Experimental-numerical method for identification of weighting function in Preisach model for ferromagnetic materials // International Conference on Applied Electronics (AE). 2016.
- 13. Eichler J., Novák M., Košek M. Implementation of the first order reversal curve method for identification of weight function in Preisach model for ferromagnetics // ELEKTRO. 2016. P. 602–607.

- 14. Zsurzsan T.-G., Andersen M.A.E., Zhe Zhang, Andersen N.A. Preisach model of hysteresis for the Piezoelectric Actuator Drive // IECON 2015 41st Annual Conference of the IEEE Industrial Electronics Society. 2015. P. 2788–2793.
- 15. Wawrzała P. Application of a Preisach hysteresis model to the evaluation of PMN-PT ceramics properties // Archives of metallurgy and materials. 2013. Vol. 58.
- 16. Андреев М.В., Боровиков Ю.С., Сулайманов А.О. Средства всережимного моделирования дифференциальных защит трансформаторов в электроэнергетических системах // Известия высших учебных заведений. Электромеханика. 2015. № 4. С. 63–67.
- 17. Андреев М.В., Боровиков Ю.С. Оптимизация уставок дифференциальных защит трансформаторов и автотрансформаторов с помощью их адекватных математических моделей // Современные проблемы науки и образования. 2013. № 3. С. 53.
- 18. Андреев М.В., Рубан Н.Ю., Гордиенко И.С., Боровиков Ю.С., Гусев А.С., Сулайманов А.О. Всережимное математическое моделирование релейной защиты электроэнергетических систем. Томск: Изд-во Томского политехнического университета, 2016. 180 с. 19. Суворов А.А., Гусев А.С., Сулайманов А.О., Андреев М.В. Проблема верификации средств моделирования электроэнергетических систем и концепция ее решения // Вестник Ивановского государственного энергетического университета. 2017. № 1. С. 11–23. 20. Боровиков Ю.С., Гусев А.С., Андреев М.В., Уфа Р.А. Полигон для отработки решений по построению активно-адаптивных сетей на базе всережимного моделирующего комплекса реального времени // Научные проблемы транспорта Сибири и Дальнего Во-

References

- 1. Hermann W. Dommel. Digital computer solution of electromagnetic transients in single- and multiphase networks. IEEE Transactions on Power Apparatus and Systems, 1969, vol. 88, no. 4, pp. 388–399.
- 2. Matyuk V.F., Osipov A.A. The mathematical models of the magnetization curve and the magnetic hysteresis loops. Part I. Analysis of models. *Nerazrushajushhij kontrol' i diagnostika* [Nondestructive Control and Diagnostics], no. 2, 2011, pp. 3–35. (In Russian).
- 3. J. H. B. Deane. Modeling the dynamics of nonlinear inductor circuits. IEEE Transactions on Magnetics. 1994, vol. 30, Issue: 5, pp. 1–13.
- 4. Naumov V.A, Shevcov V.M. Mathematical models of a current transformer in the studies of differential protection algorithms. *Jelektricheskie stancii* [Electric Stations], 2003, no. 3, pp. 51–56. (In Russian).
- 5. Novash I.F., Rumjancev Ju.F. A simplified model of three phase bank of current transformers in the dynamic simulation system. Jenergetika. Izvestija vysshih uchebnyh zavedenij i jenergeticheskih ob"edinenij SNG [Energetika. Proceedings of the CIS Higher Education Institutions and Power Engineering Associations], 2015,

no. 5, pp. 23–38. (In Russian).

стока. 2014. № 4. С. 292-296.

- 6. Korol' E.G. Analysis of modeling methods of ferromagnetic material hysteresis loop. Electrical Engineering & Electromechanic, 2007, no. 6, pp. 44–47. (In Russian). 7. Preisach F., Fur Z. Phys. 94, 277 (1935).
- 8. Eichler Ja., Novák M., Košek M. Differences between Preisach Model and Experiment for Soft Ferromagnetic Materials, Effect of Instrument Accuracy. IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics (ECMSM), 2017.
- 9. Willerich S., Herzog H.-G. Interpretation of an Energy Based Hysteresis Model as a Scalar Preisach Operator. IEEE Conference on Electromagnetic Field Computation (CEFC), 2016, p. 13.
- 10. Tousignant M., Sirois F., Kedous-Lebouc A. Identification of the Preisach Model Pa-rameters Using Only The Major Hysteresis Loop and The Initial Magnetization Curve. IEEE Conference on Electromagnetic Field Computation (CEFC). 2016, pp. 11.
- 11. Anooshahpour F., Polushin I.G., Patel R.V. Classical

ЭнергетикаPower Engineering

- Preisach Model of Hysteretic Behavior in a da Vinci Instrument. IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 2016, pp. 1392–1397.
- 12. Eichler J., Novák M., Košek M. Experimental-numerical method for identification of weighting function in Preisach model for ferromagnetic materials. International Conference on Applied Electronics (AE), 2016.
- 13. Eichler J., Novák M., Košek M. Implementation of the first order reversal curve method for identification of weight function in Preisach model for ferromagnetics, ELEKTRO, 2016, pp. 602–607.
- 14. Zsurzsan T.-G., Andersen M.A.E., Zhe Zhang, Andersen N.A. Preisach model of hysteresis for the Piezoelectric Actuator Drive // IECON 2015 41st Annual Conference of the IEEE Industrial Electronics Society, 2015, pp. 2788–2793.
- 15. Wawrzała P. Application of a Preisach hysteresis model to the evaluation of PMN-PT ceramics properties. Archives of metallurgy and materials, 2013, vol. 58.
- 16. Andreev M.V., Borovikov Yu.S., Sulaymanov A.O. Instruments for all-regimes simulation of transformers differential protections in electrical power systems. *Izvestiya vysshih uchebnyh zavedenij. Elektromekhanika* [Russian Electromechanics], 2015, no. 4,

Критерии авторства

Андреев М.В., Спица М.В., Киевец А.В. имеют равные авторские права и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов

- pp. 63-67. (In Russian).
- 17. Andreev M.V., Borovikov Yu.S. Optimization of transformers differential protection settings with its adequate mathematical models. *Sovremennye problemy nauki i obrazovaniya* [Modern Problems of Science and Education], 2013, no. 3, p. 53. (In Russian).
- 18. Andreev M.V., Ruban N.Yu., Gordienko I.S., Borovikov Yu.S., Gusev A.S., Sulaymanov A.O. Vserezhimnoe matematicheskoe modelirovanie releynoy zaschity elektroenergeticheskih sistem [All-Regimes mathematical simulation of relay protection in electrical power systems]. Tomsk: Tomsk Polytechnic University Publ., 2016, 180 p. (In Russian).
- 19. Suvorov A.A., Gusev A.S., Sulaymanov A.O., Andreev M.V. The problem of verifying electric power system simulation tools and its solution concept. *Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta* [Vestnik IGEU], 2017, no. 1, p. 11. (In Russian). 20. Borovikov Yu.S., Gusev A.S., Andreev M.V., Ufa R.A. Testing site for hybrid real-time power system simulator for research and development of active-adaptive networks. *Nauchnyie problemyi transporta Sibiri i Dalnego Vostoka* [Scientific Problems of Transport in Siberia and the Far East], 2014, no. 4, pp. 292 296. (In Russian).

Authorship criteria

Andreev M.V., Spitsa M.V., Kievets A.V. have equal author's rights and bear equal responsibility for plagiarism.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Энергетика Power Engineering

Оригинальная статья / Original article УДК 620.91/92:658.26(985)

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-114-122

ВОЗМОЖНЫЕ МАСШТАБЫ ИСПОЛЬЗОВАНИЯ ВЕТРОПОТЕНЦИАЛА ДЛЯ ЭНЕРГОСНАБЖЕНИЯ В ВОСТОЧНОЙ АРКТИЧЕСКОЙ ЗОНЕ РОССИИ

© И.Ю. Иванова¹, Т.Ф. Тугузова², Н.А. Халгаева³

Институт систем энергетики им. Л.А. Мелентьева СО РАН, 664033, Российская Федерация, г. Иркутск, ул. Лермонтова, д. 130.

РЕЗЮМЕ. ЦЕЛЬ. Обосновать места наилучшего размещения и оценить рациональные масштабы применения ветроэнергетических установок для энергоснабжения децентрализованных потребителей в восточной Арктической зоне Российской Федерации. МЕТОДЫ. При обосновании экономической эффективности применения использована экспресс-методика выбора оптимальной мощности возобновляемого источника энергии для изолированного от энергосистемы потребителя. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Выявлено три типичных группы внутригодового изменения средних скоростей ветра в зависимости от территориального расположения пункта в арктических районах. Получены зависимости соотношения оптимальной мощности к максимуму нагрузки потребителя от изменения коэффициента использования установленной мощности для различных внутригодовых распределений показателя ветропотенциала. ВЫВОДЫ. Наиболее существенное влияние на величину оптимальной мощности ветроэлектростанций в составе ветродизельного комплекса оказывает величина показателей ветропотенциала, влияние внутригодового распределения не столь выражено и проявляется в основном при низких его значениях. На основе проведенных исследований можно констатировать приоритетность использования ветропотенциала для энергоснабжения на побережье северных и восточных морей арктической зоны Российской Федерации. Однако при обосновании экономической эффективности проектов сооружения ветроэлектростанций важную роль играет выбор ее оптимальной мощности, который зависит не только от показателей ветропотенциала, но и от их изменений в течение года.

Ключевые слова: внутригодовое распределение ветропотенциала, ветродизельный комплекс, методика выбора оптимальной мошности возобновляемого источника энергии, экономическая эффективность, максимальные нагрузки, районы приоритетного размещения.

Информация о статье. Дата поступления 06 июня 2018 г.; дата принятия к печати 19 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Иванова И.Ю., Тугузова Т.Ф., Халгаева Н.А. Возможные масштабы использования ветропотенциала для энергоснабжения в восточной арктической зоне России // Вестник Иркутского государственного технического университета. 2018. T. 22. № 8. C. 114-122. DOI: 10.21285/1814-3520-2018-8-114-122

POSSIBLE USE OF WIND POTENTIAL FOR ENERGY SUPPLY IN THE EASTERN ARCTIC ZONE OF RUSSIA

I.Yu. Ivanova, T.F. Tuguzova, N.A. Khalgaeva

Melentiev Energy Systems Institute SB RAS, 130, Lermontov St., Irkutsk, 664033 Russian Federation

¹Иванова Ирина Юрьевна, кандидат экономических наук, заведующая лабораторией энергоснабжения децентрализованных потребителей, e-mail: nord@isem.irk.ru

Irina Yu. Ivanova, Candidate of Economics, Head of the Laboratory of Energy Supply of Off-Grid Consumers, e-mail: nord@isem.irk.ru

²Тугузова Татьяна Федоровна, кандидат технических наук, старший научный сотрудник лаборатории энергоснабжения децентрализованных потребителей, e-mail: sever@isem.irk.ru

Tatiana F. Tuguzova, Candidate of technical sciences, Senior Researcher of the Laboratory of Energy Supply of Off-Grid Consumers, e-mail; sever@isem.irk.ru

³Халгаева Надежда Александровна, научный сотрудник лаборатории энергоснабжения децентрализованных потребителей, e-mail: khalqaeva@isem.irk.ru

Nadezhda A. Khalgaeva, Researcher of the Laboratory of Energy Supply of Off-Grid Consumers, e-mail: khalgaeva@isem.irk.ru

Энергетика Power Engineering

ABSTRACT. The PURPOSE of the paper is to substantiate the best location of wind turbines and evaluate the scale of their rational use for off-grid consumer energy supply in the eastern Arctic zone of the Russian Federation. METHODS. The express method for the selection of an optimal capacity of the renewable energy source for the off-grid consumer is used to provide a rationale of wind farm cost-effectiveness. RESULTS AND THEIR DISCUSSION. Depending on the site location in the Arctic regions three typical groups of annual variation in average wind speeds have been identified. Dependences of the ratio of optimal capacity to the maximum consumer load on the variation of the installed capacity utilization factor have been obtained for different annual wind resource distributions. CONCLUSIONS. The magnitude of the wind potential has the most considerable effect on the value of the optimal capacity of a wind farm as a component of a wind/diesel system, while the influence of the annual distribution is not so pronounced and manifests itself mainly at its low values. The conducted studies allowed to state the priority of using the wind power potential for power supply on the coasts of the northern and eastern seas of the Arctic zone of the Russian Federation. However, when substantiating the cost-effectiveness of wind power plant projects, it is very important to choose its optimum capacity. The latter depends both on the wind power potential indicators and on their annual variations.

Keywords: annual distribution of wind potential, wind diesel system, selection methodology of optimal renewable energy source, cost-effectiveness, maximum loads, priority location areas.

Information about the article. Received June 06, 2018; accepted for publication July 19, 2018; available online August 31, 2018.

For citation. Ivanova I.Yu., Tuguzova T.F., Khalgaeva N.A. Possible use of wind potential for energy supply in the eastern Arctic zone of Russia. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk state technical university. 2018, vol. 22, no. 8, pp. 114–122. DOI: 10.21285/1814-3520-2018-8-114-122. (In Russian).

Введение

Особенностями Арктической зоны Российской Федерации, в том числе и ее восточных регионов, являются:

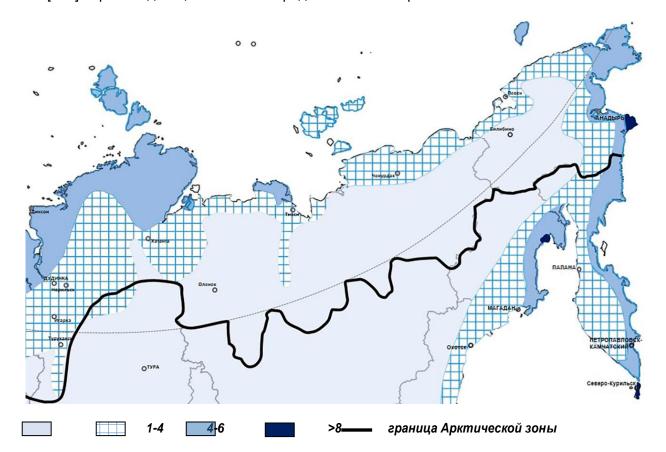
- 1) экстремальные природно-климатические условия, включая постоянный ледяной покров;
- 2) очаговый характер промышленно-хозяйственного освоения территорий и низкая плотность населения;
- 3) удаленность от основных промышленных центров, высокая ресурсоемкость и зависимость хозяйственной деятельности и жизнеобеспечения населения от поставок топлива, продовольствия и товаров первой необходимости из других регионов России;
- 4) низкая устойчивость экологических систем, определяющих биологическое равновесие и климат Земли, а также их зависимость даже от незначительных антропогенных воздействий.

Эти особенности в большей степени характерны для восточных регионов Арктики, что обусловило здесь специфическое развитие систем энергоснабжения: наличие небольших энергоузлов, низкие нагрузки, преобладание автономного электроснабжения, высокие цены на топливо и т. д.

Технологическая изолированность

большей части энергоисточников обусловливает отсутствие конкурентного рынка электроэнергии и возникновение проблем надежности электроснабжения и энергетической безопасности потребителей. Чаще всего действует следующая схема — населенный пункт или их группа обеспечивается электроэнергией от единственного энергоисточника. Суммарная мощность автономных муниципальных электростанций на арктических территориях Красноярского края, Республики Саха (Якутия), Чукотского АО оценивается в 260–270 МВт.

Основной проблемой энергоснабжения децентрализованных потребителей является неудовлетворительное состояние оборудования и слабое развитие транспортной инфраструктуры. У наиболее удаленных потребителей транспортная составляющая стоимости топлива достигает 70—80%, что приводит к высокой себестоимости производства электроэнергии — 30—50 руб./кВт·ч. Вследствие необходимости ограничения роста тарифов для населения не выше установленных нормативов, из федеральных и местных бюджетов, либо за счет перекрестного субсидирования выделяются

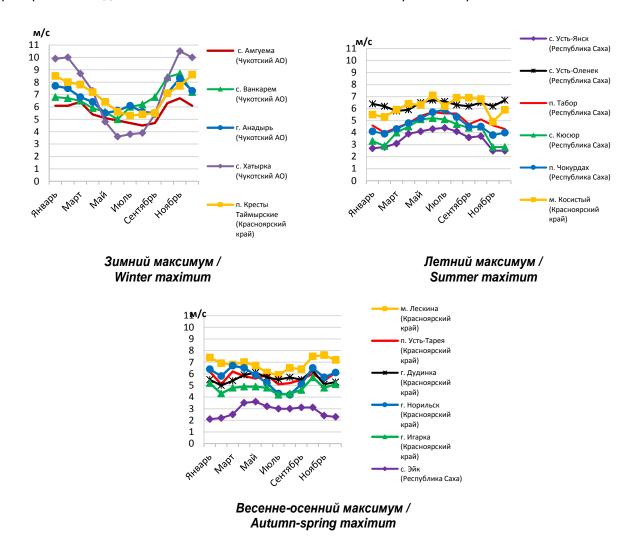

значительные дотации на выравнивание тарифов и содержание энергоисточников (например, в Республике Саха (Якутия) более 7 млрд. руб. ежегодно).

Несмотря на то, что Арктическая зона имеет значительные запасы полезных

ископаемых, в том числе топливных ресурсов, в силу труднодоступности и малоосвоенности как в транспортном, так и в энергетическом отношении, их добыча сильно затруднена.

Ветроэнергетические ресурсы

Вместе с тем восточная Арктическая зона обладает значительным ветропотенциалом. Практически на всей территории наблюдаются среднегодовые скорости ветра более 4 м/с [1-6]. Лучшие значения этого показателя (6-8 м/с) характерны для побережья Северного Ледовитого и Тихого океанов. Максимальные значения отмечаются вдоль побережья Берингова и Чукотского морей [4, 6-8], где среднегодовые скорости превышают 8 м/с (рис. 1). Континентальная часть арктической территории не располагает ветровыми ресурсами, пригодными для их использования на цели энергетики [1-6]. Преобладающие значения среднегодовой скорости ветра на высоте флюгера здесь не превышают 4 м/с. Такие скорости не рассматриваются в качестве перспективных в силу технических характеристик ветроустановок, не позволяющих вырабатывать значительное количество энергии при низких скоростях ветра. Кроме того, учитывая высокую капиталоемкость ветроустановок, существенно увеличивающуюся за счет дальнего транспорта оборудования и строительно-монтажных работ в суровых условиях арктического климата [9, 10], использование ветроэлектростанций при таких значениях ветрового потенциала нецелесообразно.


Puc. 1. Зонирование по показателю средней скорости ветра, м/с Fig. 1. Zoning by average wind speed, m/s

По результатам мониторинга данных гидрометеостанций об изменении средних скоростей ветра в течение года на территории восточной Арктической зоны [1–6] выявлено три типичных группы внутригодового распределения показателя ветропотенциала в зависимости от территориального расположения с характерным максимумом:

- зимним на побережье Чукотского и Берингова морей;
- летним на побережье северных морей;
- весенне-осенним на континентальной части (рис. 2).

Наилучшим для использования на цели энергоснабжения является внутригодовое распределение средних скоростей ветра, имеющее зимний максимум, характерное для побережья Чукотского и Берингова морей, поскольку в большей степени соответствует графику нагрузки коммунально-бытовых потребителей, изолированных от энергосистем. К тому же на этой территории наблюдаются наиболее стабильные и высокие скорости ветра.

Puc. 2. Распределение средних скоростей ветра в течение года Fig. 2. Distribution of average wind speeds during a year

Методический подход

Учитывая переменный характер проявления в течение года потенциала возобновляемых природных энергоресурсов и высокую капиталоемкость источников, их использующих, большое значение для эффективного применения у изолированных от энергосистем потребителей имеет выбор

оптимальной мощности возобновляемого источника энергии (ВИЭ) с позиций соотношения природных [11, 12] и стоимостных показателей. С этой целью для экономических обоснований авторами разработана экспресс-методика определения оптимальной мощности возобновляемого источника энергии, подробно описанная в [13], которая основана на совмещении годовых графиков потребления и возможной выработки энергии ВИЭ с учетом конкретных условий. Критерием оптимальности выступает минимум соотношения капиталовложений в ВИЭ и стоимости вытесненного органического топлива на существующем энергоисточнике.

Методика является промежуточным этапом исследований по обоснованию применения возобновляемых источников для изолированных от энергосистемы потребителей: результаты служат исходной информацией для оценки экономической эффективности проекта сооружения ВИЭ на модели динамики финансовых потоков. Общая схема и этапы проведения исследований, модельный инструментарий и примеры результатов представлены в [14].

Результаты исследований

Основной целью исследований являлось выявление соотношения оптимальной мощности ветроэлектростанции ($N_{\rm B3C}^{\rm ont}$) в составе ветродизельного комплекса и максимума нагрузки потребителя ($N_{\rm norp}^{\rm makc}$). Полученные в ходе исследования обобщенные зависимости этого соотношения от изменения коэффициента использования установленной мощности (КИУМ) для всех трех групп внутригодового распределения позволили оценить влияние природных факторов на выбор оптимальной мощности ветроэлектростанций (ВЭС) в составе ветродизельного комплекса относительно нагрузки

потребителя (рис. 3).

Наиболее существенное влияние на величину оптимальной мощности ВЭС в составе ветродизельного комплекса оказывает величина показателей ветропотенциала: при низких значениях КИУМ оптимальная мощность ВЭС превосходит максимум нагрузки потребителя в 3–10 раз, при высоких – практически с ним совпадает [15]. При современном соотношении ценовых показателей оптимальной является мощность ВЭС, при которой выполняется условие полного использования вырабатываемой электроэнергии при минимуме невостребованной.

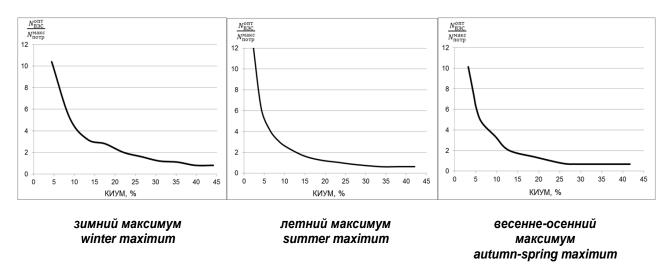


Рис. 3. Зависимости соотношения оптимальной мощности ВЭС и максимума нагрузки потребителя от коэффициента использования установленной мощности при различном внутригодовом распределении ветропотенциала

Fig. 3. Dependences of the ratio of optimal wind farm capacity and maximum consumer load on the installed capacity utilization factor under various distribution of wind potential

Влияние внутригодового распределения показателя ветропотенциала на оптимальную мощность не столь выражено и проявляется в основном при коэффициенте использования установленной мощности меньше 25%. Так при КИУМ = 10% оптимальная мощность ВЭС превосходит максимум нагрузки потребителя при зимнем максимуме в четыре раза, при летнем - в два раза, при весенне-осеннем – в три раза. При внутригодовом распределении скоростей ветра с зимним максимумом увеличение данного соотношения свидетельствует о более полном использовании установленной мощности ВЭС, чем при других распределениях.

Результаты дополнительно выполненных исследований свидетельствуют о том, что стоимостные факторы (цена вытесняемого топлива и удельные капиталовложения в энергоисточник) существенного влияния на выбор оптимальной мощности ВЭС не оказывают, но являются определяющими при оценке финансово-экономической эффективности проектов сооружения ВЭС. Рост капитальных вложений при фиксированных прочих показателях приводит к равному для всех вариантов мощности ВЭС увеличению срока окупаемости. Таким же

образом увеличение стоимости топлива на дизельной электростанции (ДЭС) уменьшает срок окупаемости всех рассматриваемых вариантов. Учитывая дискретность оборудования, при изменении стоимостных показателей в разы различия между расчетными соотношениями оптимальной мощности ВЭС и максимальной нагрузки потребителя составляют незначительную величину.

результате исследований оценке экономической эффективности проектов сооружения ВЭС определены приоритетные проекты на период до 2035 г. в восточном арктическом секторе в дополнение к дизельным электростанциям [16]. Рациональные масштабы применения ВЭС в децентрализованной зоне восточной Арктики РФ на период до 2035 г. оцениваются в 20-30 МВт (таблица). Реализация проектов сооружения ветроэлектростанций в таких масштабах позволит сократить объемы использования дизельного топлива на 12-17 тыс. т ежегодно, тем самым снизить величину бюджетных дотаций на завоз топлива на 700-900 млн руб., а также повысить эффективность и надежность энергоснабжения, улучшить комфортность проживания населения.

Рациональные вводы мощностей ветроэлектростанций в децентрализованной зоне Восточного Арктического сектора РФ на перспективу до 2035 г., МВт Rational wind farm capacities to be commissioned in the decentralized zone of the Eastern Arctic sector of the Russian Federation for the period up to 2035, МW

Субъект РФ	Административный район	Вводы мощностей, МВт	
Республика Саха (Якутия)	Булунский Усть-Янский Аллаиховский Нижнеколымский	8–10	
Чукотский автономный округ	Чаунский Шмидтовский Иультинский Чукотский Провиденский Беринговский	8–12	
Север Красноярского края	Таймырский Долгано-Ненецкий	4–8	

Выводы

Исходя из выполненного зонирования территории восточной Арктической зоны РФ по показателю среднегодовых скоростей ветра приоритетными районами для использования ветропотенциала на цели энергоснабжения являются Таймырский полуостров и восточное побережье Чукотского АО.

По внутригодовому изменению средних скоростей ветра на рассматриваемой территории выявлено три группы с характерным максимумом проявления. По этому показателю приоритетными для использования ветропотенциала на рассматриваемой территории являются побережья Чукотского и Берингова морей, где наблюдаются максимальные скорости ветра в зимний период, поскольку такое внутригодовое распределение в большей степени соответствует графику нагрузки коммунально-бытовых потребителей, изолированных от энергосистем.

В этих районах оптимальная мощность ВЭС, учитывая высокие значения показателей ветропотенциала, превосходит

максимум нагрузки потребителя в 1,5–2 раза.

В отличие от восточного побережья, в прибрежных районах Таймырского полуострова и Республики Саха (Якутия) характерным является летний максимум средних скоростей ветра, в связи с чем оптимальная мощность ВЭС с учетом показателей потенциала оценивается авторами в 75–80% от максимума нагрузки потребителя.

На основе проведенных исследований можно констатировать приоритетность использования ветропотенциала для энергоснабжения на побережье северных и восточных морей арктической зоны РФ. Однако при обосновании экономической эффективности проектов сооружения ВЭС важную роль играет выбор ее оптимальной мощности, который зависит не только от показателей ветропотенциала, но и от их изменений в течение года.

Работа выполнена в рамках научного проекта XI.174.2.3 программы фундаментальных исследований СО РАН, рег. № АААА-А17-117030310439-8.

Библиографический список

- 1. Николаев В.Г., Ганага С.В., Кудряшов Ю.И. Национальный Кадастр ветроэнергетических ресурсов России и методологические основы их определения. М.: Атмограф, 2008. 584 с.
- 2. Научно-прикладной справочник по климату СССР. Серия 3. Многолетние данные. Ч. 1–6. Вып. 21. Красноярский край, Тувинская АССР. Книга 1 / Под ред. Г.А. Кругловой. Л.: Гидрометеоиздат,1990. 623 с.
- 3. Научно-прикладной справочник по климату СССР. Серия 3. Многолетние данные. Ч. 1–6. Вып. 24. Якутская АССР. Кн. 1 / Под ред. С.А. Изюменко. Л.: Гидрометеоиздат, 1989. 609 с.
- 4. Общее научное руководство Научно-прикладной справочник по климату СССР. Серия 3. Многолетние данные. Ч. 1–6. Выпуск 33. Магаданская область, Чукотский автономный округ Магаданской области / Под ред. Е.П. Борисенкова. Л.: Гидрометеоиздат,1990. 387 с.
- 5. Безруких П.П., Дегтярев В.В. и др. Справочник по ресурсам возобновляемых источников энергии России и местным видам топлива / Показатели по территориям. М.: Энергия. 2007. 272 с.
- 6. Попель О.С. и др. Атлас ресурсов возобновляемой энергии на территории России: науч. изд. М.: РХТУ им. Д.И. Менделеева, 2015. 160 с.

- 7. Моргунова М.О., Соловьев Д.А. Энергоснабжение Российской Арктики: углеводороды или ВИЭ? // Энергоэкономическая политика. 2016. Вып. 5. С. 44–51.
- 8. Nasa Visible Earth, 2016 [Электронный источник]. URL: http://visibleearth.nasa.gov/view.php?id56893. (12.05.2018).
- 9. Tammelin B., Cavaliere M., Holttinen H., Morgan C., Seifert H. and Säntti K. Wind energy production in cold climate / WECO. Meteorological publications. Helsinki: Finnish Meteorological Institute, Project report, EUR 19398. European Commission, Community research. 2000. No. 41. 38 p.
- 10. Chauhan B., Pinard J., and Weis T.M. Pre-feasibility analysis of wind energy for Inuvialuit region in northwest territories. Canada: Aurora research institute, 2003, 66 р. 11. Попель О.С., Киселева С.В., Моргунова М.О., Габдерахманова Т.С., Тарасенко А.Б. Использование возобновляемых источников энергии для энергоснабжения потребителей в Арктической зоне Российской Федерации // Арктика: экология и экономика. 2015. № 1 (17). С. 64–69.
- 12. Кангаш А.И., Костеневич А.С., Марьяндышев П.А., Любов В.К. Оценка ветроэнергетического по-

Энергетика Power Engineering

- тенциала Соловецкого архипелага и выбор оптимальной ветроэнергетической установки // Вестник Череповецкого государственного университета. 2018. № 2. С. 9–17. DOI: 10.23859/1994-0637-2018-1-83-1.
- 13. Иванова И.Ю., Тугузова Т.Ф., Халгаева Н.А. Определение оптимальной мощности возобновляемого источника энергии для изолированного от энергосистемы потребителя // Известия РАН. Энергетика. 2014. № 3. С. 22–28.
- 14. Санеев Б.Г., Иванова И.Ю., Тугузова Т.Ф. Возобновляемые источники энергии в региональных программах энергетики на востоке России: предпосылки и рациональные масштабы // Энергетик. 2014. № 3.

- C. 6-9.
- 15. Санеев Б.Г., Иванова И.Ю., Тугузова Т.Ф., Халгаева Н.А. Влияние природных и стоимостных факторов на выбор оптимальной мощности ветроэлектростанции в составе ветродизельного комплекса на Востоке РФ // Альтернативная энергетика и экология. 2016. № 19–20. С. 21–28. DOI: http://dx.doi.org/10.15518/isjaee.2016.19-20.021-028
- 16. Санеев Б.Г., Иванова И.Ю., Тугузова Т.Ф. Развитие возобновляемой энергетики на востоке России в первой половине XXI века на фоне общероссийских тенденций // Энергетическая политика. 2016. № 3. С. 66–73.

References

- 1. Nikolaev V.G., Ganaga S.V., Kudryashov Yu.I. *Natsionalnyy Kadastr vetroenergeticheskikh resursov Rossii i metodologicheskiye osnovy ikh opredeleniya* [National Cadastre of wind energy resources of Russia and methodological bases of their determination]. Moscow: Atmograf Publ., 2008. 584 p. (In Russian).
- 2. Nauchno-prikladnoy spravochnik po klimatu SSSR. Seriya 3. Mnogoletniye dannyye. Chasti 1-6. Vypio 21. Krasnoyarskiy kray, Tuvinskaya ASSR. Kniga 1 / Pod red. G.A. Kruglovoy [Science-based Applied Reference Book on the Climate of the USSR. Series 3. Perennial data. Parts 1-6. Issue 21. Krasnoyarsk Territory, Tuva ASSR. Book 1]. L.: Gidrometeoizdat, 1990. 623 p. (In Russian).
- 3. Nauchno-prikladnoy spravochnik po klimatu SSSR. Seriya 3. Mnogoletniye dannyye. Chasti 1-6. Vypusk 24. Yakutskaya ASSR. Kniga 1 / Pod red. S.A. Izyumenko. [Science-based Applied Reference Book on the Climate of the USSR. Series 3. Perennial data. Parts 1-6. Issue 24. The Yakut ASSR. Book 1]. L.: Gidrometeoizdat, 1989. 609 p. (In Russian).
- 4. Obshcheye nauchnoye rukovodstvo Nauchno-prikladnoy spravochnik po klimatu SSSR. Seriya 3. Mnogoletniye dannyye. Chasti 1-6. Vypusk 33. Magadanskaya oblast', Chukotskiy avtonomnyy okrug Magadanskoy oblasti / Pod red. Ye.P. Borisenkova. [General scientific manual. Scientific-based Applied Reference Book on the Climate of the USSR. Series 3. Perennial data. Parts 1-6. Issue 33. The Magadan Region, Chukotka Autonomous District of the Magadan Region]. L.: Gidrometeoizdat,1990. 387 p. (In Russian).
- 5. Bezrukikh P.P., Degtyarev V.V. et al. Spravochnik po resursam vozobnovlyayemykh istochnikov energii Rossii i mestnym vidam topliva / Pokazateli po territoriyam. [Reference Book on Resources of Russian Renewable Energy Sources and Local Types of Fuel / Territory Indicators]. M.: "IATS Energiya", 2007. 272 p. (In Russian). 6. Popel' O.S. Atlas resursov vozobnovlyaemoj energii na territorii Rossii [Atlas of Renewable Energy Resources of Russia]. Moscow: D. Mendeleev University of Chemical Technology of Russia Publ., 2015, 160 p. (In Russian).
- 7. Morgunova M.O., Solov'ev D.A. Energy supply of the

- Russian Arctic: coal-hydrogen or renewable energy sources?. *Energoekonomicheskaya politika* [Energy supply in Russian Arctic: hydrocarbons or renewables?], 2016, Issue. 5, pp. 44–51. (In Russian).
- 8. Nasa Visible Earth, 2016. Available at: http://visibleearth.nasa.gov/view.php?id56893. (accessed 12 May 2018).
- 9. Tammelin B., Cavaliere M., Holttinen H., Morgan C., Seifert H. and Säntti K. Wind energy production in cold climate. WECO. Meteorological publications. Helsinki: Finnish Meteorological Institute, Project report, EUR 19398. European Commission, Community research, 2000, no. 41, 38 p.
- 10. Chauhan B., Pinard J., and Weis T.M. Prefeasibility analysis of wind energy for Inuvialuit region in northwest territories. Canada: Aurora research institute, 2003, 66 p.
- 11. Popel' O.S., Kiseleva S.V., Morgunova M.O., Gabderahmanova T.S., Tarasenko A.B. Use of renewable energy sources for power supply of the Arctic zone consumers of the Russian Federation. *Arktika: ekologiya i ekonomika* [Arctic: Ecology and Economy], 2015, no. 1 (17), pp. 64–69. (In Russian).
- 12. Kangash A.I., Kostenevich A.S., Mar'yandyshev P.A., Lyubov V.K. Wind resource assessment of the Solovetsky Archipelago and selection of the optimal wind turbine.. *Vestnik Cherepoveckogo gosudarstvennogo universiteta* [Cherepovets State University Bulletin], 2018, no. 2, pp. 9–17. DOI: 10.23859/1994-0637-2018-1-83-1. (In Russian).
- 13. Ivanova I.Yu., Tuguzova T.F., Halgaeva N.A. Determination of optimal capacity of renewable energy source for isolated consumer. *Izvestiya rossijskoj akademii nauk. Energetika* [Proceedings of the Russian Academy of Sciences. Power Engineering], 2014, no. 3, pp. 22–28. (In Russian).
- 14. Saneev B.G., Ivanova I.Yu., Tuguzova T.F. Renewable energy sources in regional energy programs in the east of Russia: background and rational scales. *Energetik* [Energetik], 2014, no. 3, pp. 6–9. (In Russian).
- 15. Saneev B.G., Ivanova I.Yu., Tuguzova T.F., Halgaeva N.A. Influence of natural and cost factors on the choice of optimal wind power plant capacity as part of a

ЭнергетикаPower Engineering

wind-diesel system in the east of Russia. *Al'ternativnaya energetika i ekologiya* [International Scientific Journal for Alternative Energy and Ecology], 2016, no. 19–20, pp. 21–28. DOI: http://dx.doi.org/10.15518/isjaee. 2016.19-20.021-028. (In Russian).

Критерии авторства

Иванова И.Ю., Тугузова Т.Ф., Халгаева Н.А. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

16. Saneev B.G., Ivanova I.Yu., Tuguzova T.F. Development of renewable energy sector in the russian east over the first half of the 21st century amidst national trends. *Energeticheskaya politika*. [Energy Policy], 2016, no. 3, pp. 66–73. (In Russian).

Authorship criteria

Ivanova I.Yu., Tuguzova T.F., Khalgaeva N.A. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Металлургия и материаловедениеMetallurgy and Materials Science

Оригинальная статья / Original article УДК 539.219.3

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-123-130

ПОВЫШЕНИЕ АНОДНОЙ УСТОЙЧИВОСТИ АЛЮМИНИЕВОГО СПЛАВА АБ1 (AI+1%Be) ЛЕГИРОВАНИЕМ ИНДИЕМ

© Р.Д. Исмонов¹, И.Н. Ганиев², Х.О. Одиназода³, А.М. Сафаров⁴

Таджикский технический университет им. академика М.С. Осими, 734042, Республика Таджикистан, г. Душанбе, просп. Раджабовых, 10.

РЕЗЮМЕ. ЦЕЛЬ. Потенциостатическим методом исследовано анодное поведение сплава АБ1 с индием в среде электролита NaCl в области концентрации индия до 0,5 масс.% и показано, что легированные сплавы характеризуются более удовлетворительной коррозионной устойчивостью по сравнению с исходным сплавом АБ1. МЕТОДЫ. Исследования выполнены в среде электролита NaCl с помощью потенциостата ПИ-50-1.1. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Добавка индия уменьшает скорость коррозии сплава АБ1 на 75% в исследованных средах. При увеличении концентрации индия до 0,5 масс.% монотонно снижается скорость коррозии сплава АБ1. Показано, что улучшение коррозионной стойкости сплава АБ1 при легировании индием объясняется его модифицирующим действием на структуру эвтектического алюминиево-бериллиевого сплава АБ1, а также увеличением истинной поверхности анода или же уплотнением защитного фазового слоя окислов малорастворимыми продуктами окисления. ВЫВОДЫ. Выполненные исследования свидетельствуют, что легирование алюминиево-бериллиевого сплава эвтектического состава (АБ1) индием повышает его коррозионную устойчивость, что сопровождается смещением в положительную область потенциала свободной коррозии сплавов.

Ключевые слова: алюминиевый сплав АБ1, электролит NaCl, потенциостатический метод, анодное поведение, потенциал коррозии, потенциал питтингообразования.

Информация о статье. Дата поступления 07 мая 2018 г.; дата принятия к печати 27 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Исмонов Р.Д., Ганиев И.Н., Одиназода Х.О., Сафаров А.М. Повышение анодной устойчивости алюминиевого сплава АБ1 (Al+1%Be) легированием индием // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 123–130. DOI: 10.21285/1814-3520-2018-8-123-130

IMPROVING ANODIC STABILITY OF AB1 (AL+1%BE) ALUMINIUM ALLOY BY DOPING WITH INDIUM

R.D. Ismonov, I.N. Ganiev, H.O. Odinazoda, A.M. Safarov

Tajik Technical University named after Academician M.S. Oshimi, 10, Radzhabovykh pr., Dushanbe, 734042, Republic of Tajikistan

¹Исмонов Рустам Довудович, аспирант, старший преподаватель кафедры технологии машиностроения, металлорежущих станков и инструментов, e-mail: ird-78@mail.ru

Rustam D. Ismonov, Postgraduate student, Senior Lecturer of the Department of Technology of Mechanical Engineering, Metal-Cutting Machines and Tools, e-mail: ird-78@mail.ru

²Ганиев Изатулло Наврузович, академик, доктор химических наук, профессор-консультант научно-исследовательского отдела, e-mail: ganiev48@mail.ru

Izatullo N. Ganiev, Academician, Doctor of Chemistry, Consulting Professor of the Research Department, e-mail: ganiev48@mail.ru

³Одиназода Хайдар Одина, доктор технических наук, профессор, ректор, член-корреспондент, член-корреспондент АН Республики Таджикистан, e-mail: odhaidar@mail.ru

Haydar Odina Odinazoda, Doctor of technical sciences, Professor, Rector of the Tajik technical University, Correspondent Member of the Academy of Sciences of the Republic of Tajikistan, e-mail: odhaidar@mail.ru

⁴Сафаров Ахрор Мирзоевич, доктор технических наук, профессор кафедры технологии машиностроения, металлорежущих станков и инструментов, e-mail: ahrorsafarov1963@mail.ru

Akhror M. Safarov, Doctor of technical sciences, Professor of the department of Technology of Mechanical Engineering, Metal-Cutting Machines and Tools, e-mail: ahrorsafarov1963@mail.ru

0

Металлургия и материаловедениеMetallurgy and Materials Science

ABSTRACT. PURPOSE. The anodic behavior of indium doped AB1 alloy is studied in the NaCl electrolyte medium in the region of indium concentration up to 0.5 wt % by a potentiostatic method. The doped alloys are demonstrated to have a more satisfactory corrosion resistance than the initial alloy AB1. **METHODS.** The studies are performed in the NaCl electrolyte medium using the PI-50-1.1 potentiostat. **RESULTS AND THEIR DISCUSSION.** Indium additions reduce the corrosion rate of AB1 alloy by 75% in the investigated media. When the indium concentration increases up to 0.5 wt % the corrosion rate of AB1 alloy decreases monotonically. It is shown that the improved corrosion resistance of AB1 alloy when doped with indium is explained by its modifying effect on the structure of the eutectic aluminum-beryllium alloy AB1, as well as by increasing the true surface of the anode or by compacting the protective phase layer of oxides with poorly soluble oxidation products. **CONCLUSIONS.** The conducted studies show that doping of the aluminum-beryllium alloy of eutectic composition (AB1) with indium improves its corrosion resistance, which is accompanied by a shift of the alloy free corrosion potential in the positive region.

Keywords: AB1 aluminium alloy, NaCl electrolyte, potentiostatic method, anodic behavior, corrosion potential, pitting potential

Information about the article. Received May 07, 2018; accepted for publication July 27, 2018; available online August 31, 2018.

For citation. Ismonov R.D., Ganiev I.N., Odinazoda H.O., Safarov A.M. Improving anodic stability of AB1 (Al+1%Be) aluminium alloy by doping with indium. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 123–130. DOI: 10.21285/1814-3520-2018-8-123-130. (In Russian).

Введение

Диаграмма состояния системы Al-Be является эвтектической. Эвтектическая точка диаграммы Al-Be соответствует 645°C и 1 масс. % Ве. Растворимость бериллия в твердом алюминии при эвтектической температуре составляет примерно 0,06–1 масс. % [1].

По мере увеличения содержания бериллия в алюминии плотность и температурный коэффициент линейного расширения снижается практически линейно от значений для алюминия до значений для бериллия. При введении бериллия плавно понижается поверхностное натяжение жидкого алюминия [1].

Технический прогресс в ряде важных отраслей промышленности определяется качеством легких сплавов на основе алюминия [2–4]. Наибольшее применение находят алюминиево-литиевые и алюминиево-бериллиевые сплавы, которые отличаются малым удельным весом, высокой удельной прочностью, способностью выдерживать большие температуры, а также высокой коррозионной стойкостью, теплопроводностью и теплоемкостью. Эти сплавы в качестве конструкционных материалов широко используются в атомной, ракетной и космической технике, в авиации, электронике и электротехнике [5–10].

Листы из алюминиево-бериллиевых сплавов используются для обшивки фюзе-

ляжей самолетов, обладающих сверхзвуковой скоростью, а также для изготовления оболочек самоуправляемых ракет-снарядов и искусственных спутников Земли. Сплавы алюминия с бериллием, благодаря достаточной прочности, малой способности к рассеянию и почти аморфной структуре применяются для изготовления реплик в электронной микроскопии [10].

Применение сплавов алюминия с бериллием в космической технике как конструкционного материала дает значительную экономию в весе по сравнению со сплавами алюминия с магнием, а также с чистым бериллием. Обладая целым рядом преимуществ, эти сплавы отличаются заметно меньшей стоимостью, чем стоимость чистого бериллия [5—10].

Введение небольших количеств бериллия (0,1–1,0%) нашло значительное применение в литых алюминиевых сплавах (улучшают жидкотекучесть этих сплавов и способствуют измельчению зерна). Добавки бериллия также используются для устранения вредного действия железа. Сплав алюминия с 1 масс.% бериллия (АБ1), являясь эвтектическим составом, также отличается целым рядом уникальных свойств [11–13]. Изготовленный на основе некондиционного алюминия с повышенным содержанием железа сплав АБ1, легированный индием,

представляет определенный интерес в качестве анодного материала для защиты от коррозии стальных конструкций.

Таким образом, цель настоящей работы заключается в разработке состава

алюминиево-бериллиевых сплавов, легированных индием с оптимальными анодными характеристиками для использования в технологии электрохимической защиты металлов.

Анализ исследования

Сплавы получали из алюминия марки А0 (ГОСТ 1583-93) [11], бериллий металлический гранулированный марки БрМ1 и лигатуры алюминия с 0,5 масс.% — индием марки ИН-1 (ГОСТ 10297-94) [12]. Сплавы содержали индий в пределах 0,01—0,5 масс.%, что предусматривало десяти- и пятидесятикратное увеличение концентрации легирующего компонента в сплаве АБ1 и по структуре соответствовало области твердого раствора индия в сплаве АБ1. Из расплава отливались цилиндрические стрежни

диаметром 8 мм и длиной 140 мм. Торцевая часть стрежня служила рабочим электродом [14].

Исследования выполнены на потенциостата ПИ-50-1.1 в среде электролита NaCl в потенциостатическом режиме. Электродом сравнения служил хлорсеребряный, стандартным — платиновый электрод. Скорость развертки потенциала составляла 2мВ/с. Подробная методика электрохимического исследования сплавов приведена в работах [14, 15].

Результаты исследования и их обсуждение

В табл. 1, 2 и на рис. 1-3 представлены результаты исследования. На рис. 1 в качестве примера представлена полная поляризационная кривая сплава АБ1 и показана последовательность снятия кривых. При электрохимических исследованиях образцы поляризовали в положительном направлении от потенциала, установившегося при погружении в исследуемый раствор (Есв.корр. – потенциал свободной коррозии или стационарный) до значения потенциала, при котором происходит резкое возрастание растворения тока (рис. 1, кривая I). Далее образцы поляризовали в обратном направлении до потенциала -1,2 В. В результате этого происходило подщелачивание приэлектродного слоя поверхности сплава и удаление оксидного слоя (рис. 1, кривые II и III). Наконец, электрод повторно поляризовали в положительном направлении (рис. 1, кривая IV) и определялись потенциалы коррозии (Екорр.), питтингообразования (Еп.о.) и репассивации (Ер.п.) [14].

Зависимость потенциала свободной коррозии сплава АБ1 с индием в среде электролита NaCl представлена на рис. 2 и в

табл. 1. Видно, что как для сплава АБ1, так и для сплавов с различным содержанием индия наблюдается смещение потенциала коррозии в положительную область по мере выдержки в среде электролита NaCl. Наибольший сдвиг величины потенциала происходит за первые 5-10 мин. от начала погружения. Это свидетельствует о динамике формирования защитного оксидного слоя на поверхности образца. Процесс завершается к 40-50-й минуте после погружения электрода в электролит [14, 15]. Добавки индия в сплав АБ1 сдвигают потенциал свободной коррозии в положительную область, т.е. при увеличении содержания легирующего компонента наблюдается монотонный рост величины потенциала свободной коррозии сплавов во всех исследованных средах (табл. 1, рис. 2).

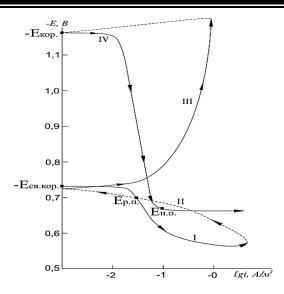
Анодные характеристики сплава АБ1 с индием, в среде электролита NaCl представлены в табл. 2. Потенциалы коррозии, питтингообразования и репассивации с ростом концентрации индия в сплаве АБ1 смещаются в положительную область. Данная зависимость имеет место во всех исследо-

Таблица 1

Временная зависимость потенциала хлоридсеребряного электрода (х.с.э.) свободной коррозии (-Е_{св.корр.}, В) сплава АБ1 от содержания индия, в среде электролита 0,3%-го NaCl

Table 1 Temporal dependence of the silver chloride electrode potential of AB1 alloy free corrosion (-Esp.corr., B) on the indium content in the electrolyte medium of 0.3% NaCl

Время, мин.	Содержание индия, масс. %					
	0.0	0.01	0.05	0.1	0.5	
0	1.000	0.916	0.909	0.890	0.876	
0,15	0.970	0.890	0.878	0.870	0.854	
0,2	0.946	0.876	0.866	0.860	0.840	
0,3	0.928	0.860	0.850	0.844	0.826	
0,4	0.910	0.846	0.838	0.830	0.810	
0,5	0.882	0.830	0.826	0.820	0.796	
0,6	0.852	0.814	0.810	0.805	0.778	
2	0.824	0.792	0.788	0.780	0.750	
3	0.796	0.758	0.756	0.750	0.722	
4	0.759	0.728	0.725	0.720	0.700	
5	0.724	0.700	0.697	0.690	0.682	
10	0.690	0.668	0.660	0.656	0.650	
20	0.656	0.640	0.636	0.630	0.626	
30	0.624	0.615	0.610	0.606	0.600	
40	0.608	0.594	0.590	0.588	0.576	
50	0.601	0.574	0.570	0.565	0.556	
60	0.600	0.570	0.566	0.560	0.556	


Таблица 2

Коррозионно-электрохимические характеристики сплава АБ1, в среде электролита NaCl. Скорость развертки потенциала 2 мВ/с

Table 2

Corrosion and electrochemical characteristics of AB1 alloy in the medium of NaCl electrolyte. Potential sweep speed is 2 mV/s

Среда NaCl,	Содержание индия в сплаве, масс. %	Электрохимические потенциалы (х.с.э.), В				Скорость коррозии	
масс.%		-E _{св.корр.}	-Екорр.	-Е _{п.о.}	- Е _{реп.}	i _{кор.} 10 ⁻²	K·10 ⁻³
		-∟св.корр.	-∟корр.	-∟п.о.	-∟реп.	A/m ²	г/м ² ·час
	-	0.560	1.090	0.490	0.540	0.031	10.38
	0.01	0.510	0.930	0.440	0.495	0.023	7.70
0,03	0.05	0.500	0.920	0.424	0.490	0.021	7.03
	0.1	0.495	0.910	0.412	0.484	0.019	6.36
	0.5	0.490	0.900	0.400	0.475	0.018	6.03
0,3	-	0.600	1.114	0.560	0.580	0.036	12.06
	0.01	0.570	0.990	0.520	0.560	0.030	10.05
	0.05	0.566	0.940	0.510	0.555	0.029	9.71
	0.1	0.560	0.926	0.500	0.540	0.027	9.04
	0.5	0.556	0.906	0.485	0.540	0.025	8.37
3,0	-	0.728	1.160	0.670	0.700	0.042	14.07
	0.01	0.642	1.100	0.580	0.680	0.038	12.73
	0.05	0.632	0.960	0.565	0.670	0.036	12.06
	0.1	0.626	0.950	0.540	0.660	0.034	11.40
	0.5	0.620	0.940	0.520	0.660	0.033	11.05

Puc. 1. Полная поляризационная кривая (2 мВ/с-1) AБ1, в среде электролита 3%-го NaCl Fig. 1. Complete polarization curve (2 mV/s-1) AB1 in the electrolyte medium of 3% NaCl

ванных средах 0,03; 0,3 и 3,0% -го NaCl. Добавки индия повышают анодную устойчивость сплава АБ1 на 75% в исследованных средах, о чем свидетельствует уменьшение плотности тока (ікор., А/м²) коррозии сплавов (табл. 2). При увеличении концентрации индия до 0,5 масс.% монотонно снижается скорость коррозии (К, г/м²-час) сплава АБ1. По-

добное поведение свидетельствует о том, что предельная растворимость индия в сплаве АБ1 может превышать 0,5 масс.%. Обычно при переходе границы растворимости наблюдается скачкообразное изменение физико-химических свойств сплавов, что при исследовании не было замечено [13–15].

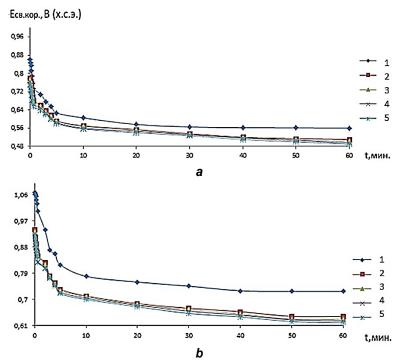


Рис. 2. Временная зависимость потенциала хлоридсеребряного электрода (х.с.э.) свободной коррозии сплава АБ1 (1), содержащего индий, масс.%: 0,01(2); 0,05(3); 0,1(4); 0,5(5), в среде 0,03% (а) и 3% -го NaCl (b)

Fig. 2. Temporal dependence of the potential (silver chloride electrode) of free corrosion of AB1(1) alloy containing indium, wt %: 0.01(2); 0.05 (3); 0.1 (4); 0.5 (5), in the medium of 0.03% (a) and 3% NaCl (b)

Анодные ветви потенциодинамики кривых сплава АБ1 с индием представлены на рис. 3. Кривые, относящиеся к легированным сплавам, располагаются левее кривых исходного сплава АБ1 во всех исследованных средах, что свидетельствует о снижении скорости анодной коррозии при легировании его индием.

Таким образом, улучшение коррозионной стойкости сплава АБ1 при легировании индием объясняется его модифицирующим действием на структуру эвтектического алюминиево-бериллиевого сплава АБ1, а также увеличением истинной поверхности анода или же уплотнением защитного фазового слоя окислов малорастворимыми продуктами окисления [13, 14].

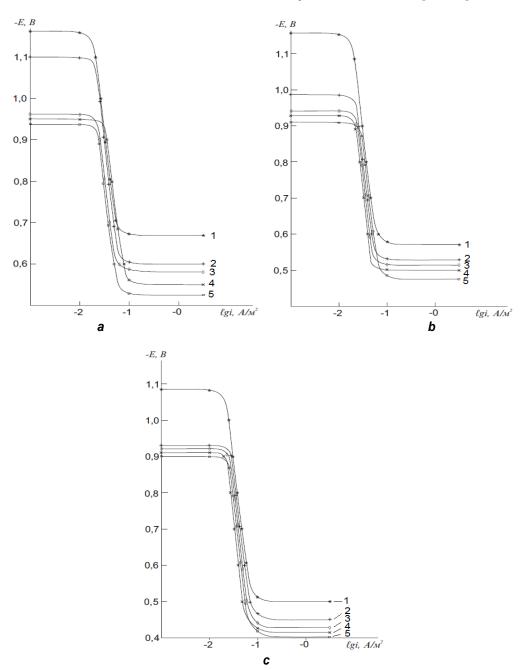


Рис. 3. Анодные ветви потенцио-динамических кривых сплава АБ1 (1), содержащего индий, масс.%: 0,01 (2); 0,05 (3); 0,1 (4); 0,5 (5), в среде 3% (а), 0,3% (b), 0,03% NaCl (c)

Fig. 3. Anodic branches of potentiodynamic curves of AB1(1) alloy containing indium, wt %: 0.01 (2); 0.05 (3); 0.1 (4); 0.5 (5), in the medium of 3% (a), 0.3% (b), 0.03% NaCl (c)

Выводы

- 1. Потенциостатическим методом в потенциодинамическом режиме при скорости развертки потенциала 2 мВ/с исследовано анодное поведение алюминиево-бериллиевого сплава АБ1, легированного индием в среде электролита NaCl различной концентрации.
- 2. Показано, что легирование сплава АБ1 индием повышает его коррозионную устойчивость на 70%. Рост коррозионной стойкости сплава АБ1 сопровождается смещением в более положительную область
- потенциалов коррозии, питтингообразования и репассивации сплавов в среде электролита NaCl. При этом с увеличением добавок индия в сплаве АБ1 отмечен рост указанных потенциалов в положительном направлении оси ординат независимо от концентрации электролита NaCl.
- 3. Показано, что с ростом концентрации хлорид-иона в электролите наблюдается уменьшение скорости коррозии сплавов, что сопровождается смещением электрохимических потенциалов в отрицательную область.

Библиографический список

- 1. Мондольфо Л.Ф. Структура и свойства алюминиевых сплавов. М.: Металлургия. 1973. 639 с.
- 2. Воронцова Л.А. Алюминий и алюминиевые сплавы в электротехнических изделиях. М.: Энергия, 1971. 224 с.
- 3. Горбунов Ю.А. Роль и перспективы редкоземельных металлов в развитии физико-механических характеристик и областей применения деформируемых алюминиевых сплавов // Журнал Сибирского федерального университета. Серия: техника и технологии. 2015. Т. 8. № 5. С. 636–645.
- 4. Белов Н.А., Гершман Е.И., Гершман И.С., Горячева И.Г.,Загорский Д.Л., Котова Е.Г., Маховская Ю.Ю., Мезрин А.М., Миронов А.Е., Муравьева Т.И., Сачек Б.Я., Столярова О.О., Торская Е.В. Алюминиевые сплавы антифрикционного назначения. М.: МИСиС, 2016. 223 с.
- 5. Fei Zhang, JianShen, Xiao Dong and others Homogenization heat treatmentof 2099 Al-Li Alloy// Rare Metals. 2014. Vol. 33 (1). P. 28–36.
- 6. Li W., Zhu S., Wang C., Chen M., Shen M., Wang F., SiO₂–Al₂O₃–glass composite coating on Ti–6Al–4V alloy: oxidation and interfacial reaction behavior // Corros. Sci. 74 (2013) 367–378.
- 7. Lynch S.P. Wanhill J.H., Byrnes R.T., Bray G.H. Fracture Toughness and Fracture Modes of Aerospace Aluminum–Lithium Alloys // Chapter 13. P. 416–456 in book: "Aluminum-Lithium Alloys. Processing, Properties and Applications" Elsivier Inc. 2014. P. 554–558.
- 8. Коган Б.И., Копустинская К.А., Топунова Г.А. Бериллий. М.: Наука, 1975. 372 с.

- 9. Сафаров А.М., Ганиев И.Н., Одинаев Х.О. Физикохимия алюминиевых сплавов с бериллием и редкоземельными металлами. Душанбе: Филиал МГУ. 2011. 284 с.
- 10. Басс Н.В. Бериллий. М.: Изд-во иностранной литературы, 1960. С. 33–37.
- 11. ГОСТ 1583-93 Сплавы алюминиевые литейные [Электронный ресурс]. URL: www.cad.dp.ua/gost/files/GOST1583-93.pdf (06.05.2018).
- 12. ГОСТ 10297-94 Индий. Технические условия [Электронный ресурс]. URL: www.internet-law.ru/gosts/gost/27775/ (06.05.2018).
- 13. Исмонов Р.Д., Ганиев И.Н., Одиназода Х.О, Сафаров А.М. О коррозионном потенциале сплава АБ1, легированного индием, в среде электролита NaCl // Политехнический Вестник. Серия: Инженерные исследования ТТУ. 2017. № 3 (39). С. 17–23.
- 14. Обидов З.Р., Ганиев И.Н., Эшов Б.Б., Амонов И.Т. Коррозионно-электрохимические и физико-химические свойства сплава Al+2,18%Fe, легированного индием // Журнал прикладной химии. 2010. № 2 Т. 83. С. 264–267.
- 15. Назаров Ш.А., Ганиев И.Н., Норова М.Т., Ганиева Н.И., І. Calliari Потенциодинамическое исследование сплава Al+6%Li с иттрием, в среде электролита NaCl // Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2016. Т.14. № 2. С. 95–100.

References

- 1. Mondolfo L.F. *Struktura i svojstva alyuminievyh splavov* [Structure and properties of aluminum alloys]. Moscow: Metallurgy Publ., 1973, 639 p. (In Russian).
- 2. Voroncova L.A. Alyuminij i alyuminievye splavy v elektrotehnicheskih izdeliyah [Aluminum and aluminum
- alloys in electrical products]. Moscow: Energiya Publ., 1971, 224 p. (In Russian).
- 3. Gorbunov Yu.A. The role and prospects of rare earth metals in the development of physical-mechanical characteristics and applications of deformable aluminum

0

Металлургия и материаловедение Metallurgy and Materials Science

- alloys. Zhurnal Sibirskogo federal'nogo universiteta. Seriya: tekhnika i tekhnologii [Journal of SibFU. Engineering & Technologies], 2015, vol. 8, no. 5, pp. 636–645. (In Russian).
- 4. Belov N.A., Gershman E.I., Gershman I.S., Goryacheva I.G., Zagorskij D.L., Kotova E.G., Mahovskaya Yu.Yu., Mezrin A.M., Mironov A.E., Murav'eva T.I., Sachek B.Ya., Stolyarova O.O., Torskaya E.V. *Alyuminievye splavy antifrikcionnogo naznacheniya* [Aluminum antifriction alloys]. Moscow: MISiS Publ., 2016, 223 p. (In Russian).
- 5. Fei Zhang, Jian Shen, Xiao Dong and others Homogenization heat treatment of 2099 Al-Li Alloy// Rare Metals, 2014, vol. 33 (1), pp. 28–36.
- 6. Li W., Zhu S., Wang C., Chen M., Shen M., Wang F., SiO₂–Al₂O₃–glass composite coating on Ti–6Al–4V alloy: oxidation and interfacial reaction behavior. Corros. Sci. 74 (2013), pp 367–378.
- 7. Lynch S.P. Wanhill J.H., Byrnes R.T., Bray G.H. Fracture Toughness and Fracture Modes of Aerospace Aluminum–Lithium Alloys / S.P. Lynch, // Chapter 13. P. 416-456 in book: "Aluminum–Lithium Alloys. Processing, Properties and Applications" Elsivier Inc. 2014, pp. 554–558.
- 8. Kogan B.I., Kopustinskaya K.A., Topunova G.A. Beryllium. Moscow: Science Publ., 1975. 372 p. (In Russian).
- 9. Safarov A.M., Ganiev I.N., Odinaev Kh.O. Fizikohimiya alyuminievyh splavov s berilliem i redko-

Критерии авторства

Исмонов Р.Д., Ганиев И.Н., Одиназода Х.О., Сафаров А.М. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

- zemel'nymi metallami [Physicochemistry of aluminum alloys with beryllium and REM]. Dushanbe: Branch of the Moscow State University, 2011, 284 p. (In Russian).
- 10. Bass N.V. *Berillij* [Beryllium]. Moscow: Foreign Literature Publ. 1960, pp. 33–37. (In Russian).
- 11. GOST 1583-93 *Splavy alyuminievye litejnye* [Aluminum foundry alloys]. URL: www.cad.dp.ua/gost/files/GOST1583-93.pdf (06.05.2018).
- 12. GOST 10297-94 *Indij. Tekhnicheskie usloviya* [Indium. Technical conditions]. URL: www.internet-law.ru/gosts/gost/27775/ (06.05.2018).
- 13. Ismonov R.D., Ganiev I.N., Odinazoda K.O., Safarov A.M. About corrosive potential of AB1 alloy doped with indium in NaCl electrolyte medium. *Politekhnicheskij vestnik. Seriya: Inzhenernye issledovaniya Tadzhikskogo tekhnicheskogo universiteta* [Polytechnic Bulletin. Series: Engineering studies], 2017, no. 3 (39), pp. 17–23. (In Russian).
- 14. Obidov Z.R., Ganiev I.N., Eshov B.B., Amonov I.T. Corrosion-electrochemical and physico-chemical properties of alloy AI + 2.18% Fe doped with indium. *Zhurnal prikladnoj himii* [Journal of Applied Chemistry], 2010, no. 2, vol. 83, pp. 264–267. (In Russian).
- 15. Nazarov Sh.A., Ganiev I.N., Norova M.T., Ganieva N.I., Calliari I. Potentiodynamic study of the AI + 6% Li alloy doped with yttrium in NaCl solution. *Vestnik Magnitogorskogo Gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova* [Vestnik of Nosov Magnitogorsk State Technical University], 2016, vol. 14, no. 2, pp. 95–100. (In Russian).

Authorship criteria

Ismonov R.D., Ganiev I.N., Odinazoda H.O., Safarov A.M. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Металлургия и материаловедение Metallurgy and Materials Science

Оригинальная статья / Original article УДК 669.04:666.76

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-131-142

ВЫБОР ГЛИНИСТОЙ СВЯЗКИ ОГНЕУПОРНОЙ МАССЫ ДЛЯ ФУТЕРОВКИ РАЗЛИВОЧНЫХ КОВШЕЙ

© С.С. Квон¹, В.Ю. Куликов², А.М. Достаева³, Е.П. Щербакова⁴, С.К. Аринова⁵, Т.В. Ковалёва⁶

Карагандинский государственный технический университет, 100027, Республика Казахстан, г. Караганда, Бульвар Мира, 56.

РЕЗЮМЕ. ЦЕЛЬ. Основной составляющей огнеупорных кирпичей является глина. В частности, огнеупорные кирпичи используются для футеровки разливочных ковшей и плавильных печей. Технологическим показателем глинистой суспензии является вязкость. Было исследовано влияние концентрации глин различных месторождений Казахстана на вязкость суспензии. МЕТОДЫ. Эксперименты по определению вязкости проводились на Вискозиметре SV-1A. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Глина в огнеупорной массе присутствует в качестве связующего, следовательно, она должна быть равномерно распределена во всем объеме смеси. Вместе с тем, вязкость во многом влияет на адгезию и когезию покрытия, что в конечном итоге сказывается на эффективности работы и долговечности покрытия. В целом на вязкость влияют форма и размер частиц глины, качество присутствующей жидкости. Диаграммы изменения вязкости показали, что наименьшей вязкостью обладает суспензия с глиной месторождения Белое Глинище, а наибольшей - с глиной месторождения Дарат. Определено, что частицы глины Белого Глинища имеют цилиндрическую форму, месторождения Дарат – зернистую, а Федоровского месторождения – хлопьевидную. Наиболее целесообразной для связки признана глина месторождения Белое Глинище в сочетании с мелкодисперсным шамотом в соотношении 60:25. Это способствует изготовлению огнеупорных кирпичей с оптимальной, равномерно распределенной, закрытой пористостью (10-15%), что, в свою очередь, повышает срок службы огнеупорной композиции. ВЫВОДЫ. Исследования показали, что при соотношении глины к шамоту 50:35 наибольшей вязкостью обладает суспензия на основе глины месторождения Белое Глинище, а при соотношении 60:25 одинаковая вязкость наблюдается у суспензий на основе глин месторождений Белое Глинише и Федоровский разрез. Испытания предложенной огнеупорной массы, проведенные при разливке стали в литейном цехе TOO «КМЗ им. Пархоменко» (г. Караганда) показали, что по сравнению с использованной ранее композицией на основе бентонитовой глины срок службы футеровки увеличивается на 20%.

Ключевые слова: разливочный ковш, футеровочные материалы, вязкость, плотность, суспензия, растворитель.

¹Квон Светлана Сергеевна, кандидат технических наук, профессор кафедры нанотехнологии и металлургии, e-mail: Svetlana.1311@mail.ru

Svetlana S. Kvon, Candidate of technical sciences, Professor of the Department of Nanotechnologies and Metallurgy, e-mail: Svetlana.1311@mail.ru

 $^{^2}$ Куликов Виталий Юрьевич, кандидат технических наук, профессор кафедры нанотехнологии и металлургии, e-mail: mlpikm@mail.ru

Vitaliy Yu. Kulikov, Candidate of technical sciences, Professor of the Department of Nanotechnologies and Metallurgy, e-mail: mlpikm@mail.ru

³Достаева Ардак Мухамедиевна, доктор PhD, старший преподаватель кафедры нанотехнологии и металлургии, e-mail: ardak_erkekyz@mail.ru

Ardak M. Dostaeva, PhD, Senior Lecturer of the Department of Nanotechnologies and Metallurgy, e-mail: ardak_erkekyz@mail.ru

 $^{^4}$ Щербакова Елена Петровна, доктор PhD, старший преподаватель кафедры нанотехнологии и металлургии, e-mail: sherbakova_1984@mail.ru

Elena P. Scherbakova, PhD, Senior Lecturer of the Department of Nanotechnologies and Metallurgy, e-mail: sherbakova_1984@mail.ru

⁵Аринова Сания Каскатаевна, магистр, докторант кафедры нанотехнологии и металлургии e-mail: sanya kazah@mail.ru

Saniya K. Arinova, Master degree student, Doctoral Candidate of the Department of Nanotechnologies and Metallurgy, e-mail: sanya_kazah@mail.ru

⁶Ковалёва Татьяна Викторовна, магистр, докторант кафедры нанотехнологии и металлургии, e-mail: sagilit@mail.ru Tatiana V. Kovaleva, Master degree student, Doctoral Candidate of the Department of Nanotechnologies and Metallurgy, e-mail: sagilit@mail.ru

Металлургия и материаловедение Metallurgy and Materials Science

Информация о статье. Дата поступления 15 июня 2018 г.; дата принятия к печати 23 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Квон С.С., Куликов В.Ю., Достаева А.М., Щербакова Е.П., Аринова С.К., Ковалёва Т.В. Выбор глинистой связки огнеупорной массы для футеровки разливочных ковшей // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 131–142. DOI: 10.21285/1814-3520-2018-8-131-142

CHOOSING CLAY BINDING OF REFRACTORY MIXTURE FOR POURING LADLE LINING

S.S. Kvon, V.Yu. Kulikov, A.M. Dostaeva, E.P. Scherbakova, S.K. Arinova, T.V. Kovaleva

Karaganda State Technical University, 56 Mira blvd., Karaganda, 100027, Republic of Kazakhstan

ABSTRACT. PURPOSE. The main component of fire-resistant bricks is clay. In particular, fire-resistant bricks are used for lining of pouring ladles and smelting furnaces. A technological indicator of clay suspension is viscosity. The paper studies the influence of concentration of various Kazakhstan deposits clays on suspension viscosity. METHODS. The experiments on viscosity determination were carried out using the SV-1A Viscometer. RESULTS AND THEIR DISCUSSION. Clay in refractory mix is present as a binding agent, therefore, it should be evenly distributed throughout the whole volume of the mix. At the same time, viscosity has a strong effect on coating adhesion and cohesion that finally affects the efficiency and durability of the coating. In broad terms the shape and size of clay particles as well as the quality of the present liquid affect the viscosity. The diagrams of viscosity variation have shown that the suspension with the clay from the Beloe Glinishche field has the smallest viscosity, the greatest viscosity has the suspension with the clay from the Darat field. It has been determined that the clay particles of the Beloe Glinishche field have a cylindrical form, the clay particles of the Darat field are granular, whereas the clay particles of the Fedorovskoe field are flake-like. The clay from the Beloe Glinishche field in combination with the finely ground fire-clay in the proportion of 60:25 is considered to be the most useful for binding. This contributes to the production of fire-resistant bricks with the optimum evenly distributed sealed porosity (10-15%) that raises the service life of a fire-resistant composition. CONCLUSIONS. The conducted studies have shown that the greatest viscosity has the suspension based on Beloe Glinishche clay when the proportion of clay to chamotte is 50:35. The suspensions based on Beloe Glinishche clay and Fedorovskoe field clay feature similar viscosity when the proportion is 60:25. The tests of the proposed refractory mix carried out when pouring steel in the foundry shop of the Factory named after Parkhomenko LLP (Karaganda) have shown the increase in the service life of lining by 20% as compared with the composition based on the bentonite clay used earlier.

Keywords: pouring ladle, lining materials, viscosity, density, suspension, solvent.

Information about the article. Received June 15, 2018; accepted for publication July 23, 2018; available online August 31, 2018.

For citation. Kvon S.S., Kulikov V.Yu., Dostaeva A.M., Scherbakova E.P., Arinova S.K., Kovaleva T.V. Choosing clay binding of refractory mixture for pouring ladle lining. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 131–142. DOI: 10.21285/1814-3520-2018-8-131-142 (In Russian).

Введение

Значение огнеупорных изделий в промышленности определяется тем, что без них практически невозможно поддерживать высокие температуры в металлургических печах. В индустриально развитых странах доля стоимости огнеупоров составляет примерно 0,1 % валового национального продукта и до 8–10 % включает себестоимость металла.

Огнеупорные изделия используются практически во всех отраслях промышленности. Они имеют большое значение в ме-

таллургии и при современных тенденциях к применению все чаще эксплуатируются крупнотоннажные агрегаты высоких температур.

Требования к огнеупорам в перспективе будут непрерывно повышаться, в особенности с учетом нужд новых технологических процессов.

Факторами, обеспечивающими качество, а, следовательно, и долговечность огнеупорных футеровок, являются режимы формообразования и их состав [1–4].

Постановка задачи

Известно, что одним из основных показателей связующего является вязкость. Вязкость во многом влияет на адгезию и когезию материала, что в условиях футеровки огнеупорной массой внутренней поверхности ковшей в конечном итоге сказывается на эффективности работы формуемого изделия.

В частности, добавки глины используются в шамотных массах, в огнеупорных обмазках.

Глинистые суспензии являются вязкопластичными телами. Конечно, в целом на вязкость будут влиять форма и размер частиц глины, а также качество жидкости. Естественно, с повышением твердой фазы в суспензии ее вязкость будет увеличиваться [5–7].

Для реологических исследований обязательным является определение напряжения сдвига, под действием которого вязкие, вязкопластичные тела приводятся в движение. Вязкость определяют напряже-

ние и скорость сдвига. Изучению влияния формы частиц твердой фазы на вязкость суспензий для футеровки посвящены ряд исследований [8–11].

Исследованию вязкости глинистых материалов и ее влиянию на свойства материалов в металлургии посвящены работы [12–15].

Глина в прессуемой массе присутствует в качестве связующего, следовательно, она должна быть равномерно распределена во всем объеме смеси. Технологически она должна присутствовать в мелкодисперсном состоянии.

Целью исследования явилось определение вязкости суспензий с использованием глин различных месторождений. Рассматривали вязкость суспензий на основе глин различных месторождений Казахстана: Белое Глинище, Дарат и Федоровское месторождение. В экспериментах исследовали вязкость суспензий – связок, вводимых в шамотную массу.

Экспериментальная часть

Эксперименты проводились на Вискозиметре SV-1A (Япония). Исследование влияния концентрации растворителя и глины на вязкость исследовали на вибрационном вискозиметре SV-1A (рис. 1), основанном на методе камертонной вибрации, что способствует точности измерений. Суспензия смешивалась в катковых бегунах.

В экспериментах использовали глины трех месторождений Республики Казахстан (таблица, рис. 2).

Составы глинистых суспензий, использованных в экспериментах, приведены в таблице.

Было исследовано влияние концентрации глин различных месторождений на вязкость суспензии (рис. 3).

Исследования показали, что при соотношении исследуемой глины к тонкоизмельченному шамоту в пропорции 60:25 наибольшей вязкостью обладает глина месторождения Белое Глинище, а при соотно-

шении исследуемой глины и тонкоизмельченного шамота 50:35 в суспензии примерно одинаковая вязкость наблюдается у глин месторождений Белое глинище и Федоровский разрез. Очевидно, что с увеличением объемной концентрации частиц упругость частиц способствует увеличению вязкости. При достижении же содержания 30 % суспензия становится более структурированной, что определяет неньютоновские жидкости.

На рис. 4–6 представлены диаграммы изменения вязкости и температуры суспензии во времени соответственно суспензий с использованием месторождений Белого глинища, Дарат и Федоровского.

С повышением концентрации галлуазитовых частиц кривая становится гладкой, вероятно, вследствие того, что галлуазитовые частицы имеют форму цилиндров и в меньшей степени влияют на скорость движения жидкой фазы суспензии.

Puc. 1. Вискозиметр SV-1A Fig. 1. SV-1A Viscometer

a b c

Puc. 2. Глины различных месторождений а – месторождение Белое Глинище; b – месторождение Дарат; c – Федоровское месторождение Fig. 2. Clays from various fields a – Beloe Glinishche field; b – Darat field; c – Fedorovskoe field

Cocmaв суспензий, использованных в экспериментах Composition of suspensions used in experiments

		suspensions used in ex	• • • • • • • • • • • • • • • • • • • •			
Образец	Соотношение глины: тон- коизмельченный шамот (фракции 0,3–0,5 мм), % во всем объеме смеси	Дистиллированная вода	Начальная температура рас- твора	Вязкость		
	Глина месторождения Белое Глинище					
№ 1	50:35	15	25,4	1,4		
Nº 2	55:30	15	23,9	1,44		
Nº 3	60:25	15	23,8	2,14		
	Глина месторождения Дарат					
№ 1	50:35	15	22,5	1,32		
Nº 2	55:30	15	22,8	1,60		
№ 3	60:25	15	22,5	2,15		
Глина Федоровского месторождения						
№ 1	50:35	15	22,5	1,39		
Nº 2	55:30	15	22,8	1,60		
Nº 3	60:25	15	22,5	2,15		

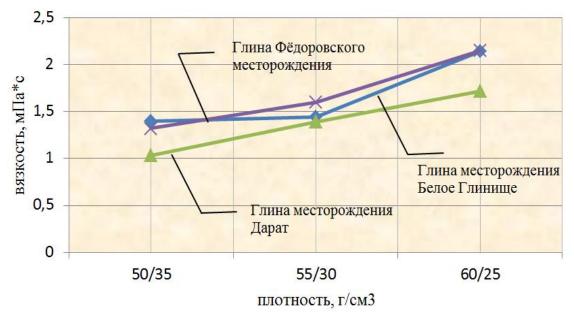


Рис. 3. Зависимость вязкости суспензии от соотношения глины: тонкоизмельченный шамот (фракция 0,3–0,5 мм) глины разных месторождений

Fig. 3. Dependence of suspension viscosity on clay proportion: finely ground fire-clay (0.3–0.5 mm fraction) from different fields

Металлургия и материаловедение Metallurgy and Materials Science

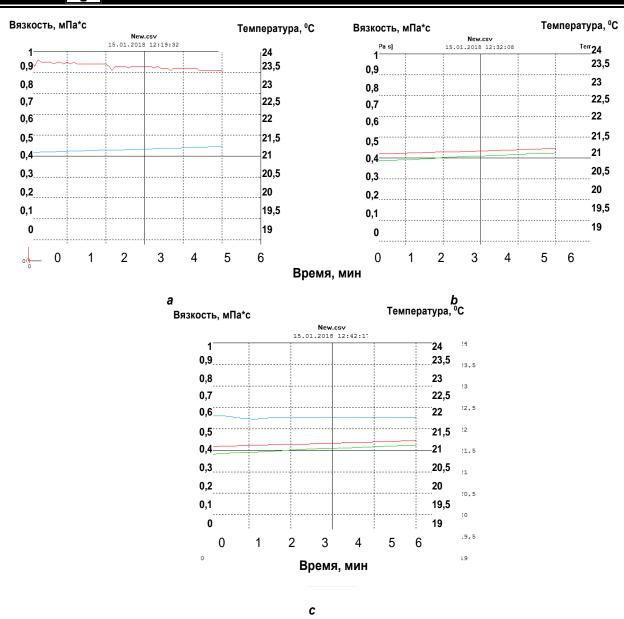


Рис. 4. Изменение вязкости и температуры суспензии с использованием глины месторождения Белое Глинище во времени (реологический профиль): a − 50:35; b − 55:30; c − 60:25

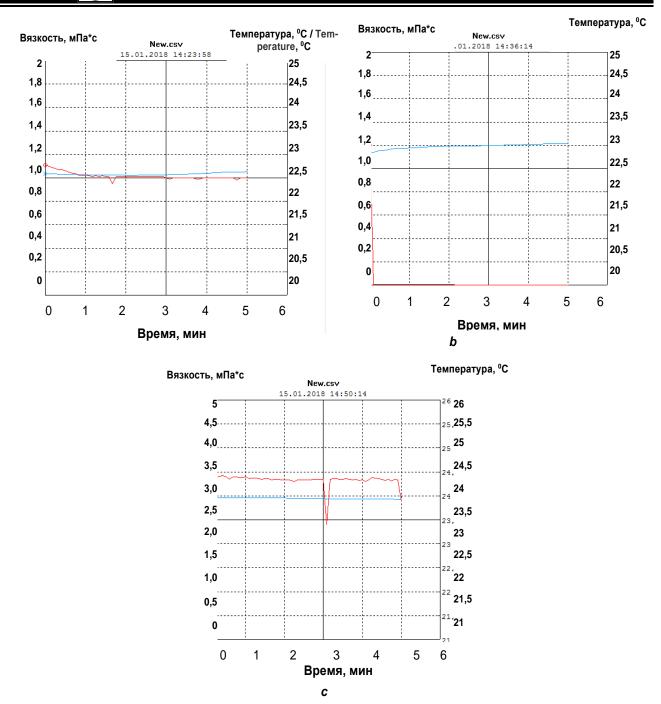
Fig. 4. Time variation of suspension viscosity and temperature using clay from Beloe Glinishche field (rheological profile): a − 50:35; b − 55:30; c − 60:25

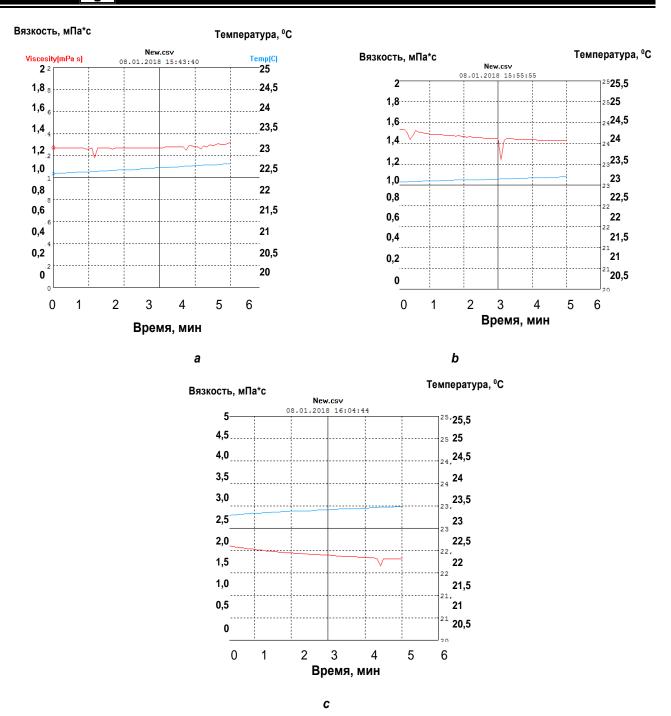
Из рис. 4 видно, что изменение температуры (увеличение) суспензии вследствие влияния окружающей среды и вибрации пластины прибора вискозиметра в течение испытания незначительны. В то же время с повышением температуры вязкость суспензии снижается. Пики возникают вследствие того, что исследуемое покрытие не является ньютоновской жидкостью (то есть вязкость зависит от скорости сдвига пластины вискозиметра).

Из рис. 5 видно, что вязкость суспензии с использованием глины месторождения Дарат относительно мягко снижается вследствие выравнивания структуры в суспензии. Примерно аналогичная картина наблюдается и у суспензии с использованием глины Федоровского месторождения.

Характер распределения вязкости у суспензий разной плотности с глинами Федоровского месторождения примерно одинаков, и с повышением температуры вязкость несколько уменьшается.

Металлургия и материаловедениеMetallurgy and Materials Science




Рис. 5. Изменение вязкости и температуры суспензии с использованием глины месторождения Дарат во времени (реологический профиль): a - 50:35; b - 55:30; c - 60:25 Fig. 5. Time variation of suspension viscosity and temperature using Darat field clay (rheological profile): a - 50:35; b - 55:30; c - 60:25

Также с использованием микроскопа Альтами МЕТ 5Д (Россия) исследована форма частиц глин исследуемых месторождений (рис. 7).

Как видно, форма частиц глины Белого Глинища цилиндрическая, месторождения Дарат имеют зернистую форму, а

глина Федоровского месторождения – хлопьевидную. С точки зрения препятствования смещению слоев жидкости относительно друг друга наименьшее сопротивление будет оказывать глина месторождения Белое Глинище, а наибольшее – глина месторождения Дарат. Определено, что, изменяя

Металлургия и материаловедениеMetallurgy and Materials Science

Puc. 6. Изменение вязкости и температуры суспензии с использованием глины Федоровского месторождения во времени (реологический профиль): a − 50:35; b − 55:30; c − 60:25 Fig. 6. Time variation of suspension viscosity and temperature using Fe-dorovskoe field clay (rheological profile): a − 50:35; b − 55:30; c − 60:25

фракционный состав наполнителя, можно в значительной степени увеличить общее наполнение в суспензии, сохранив ее вязкость в пределах, необходимых для покрытия.

Таким образом, наиболее целесооб-

разной для связки огнеупорной суспензии для разливочных ковшей признана глина месторождения Белое Глинище в сочетании с мелкодисперсным шамотом в соотношении 60:25.

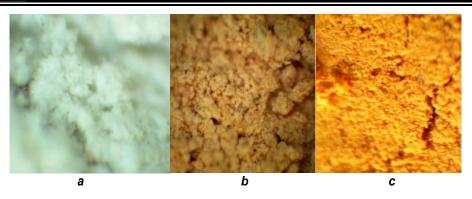


Рис. 7. Форма частиц глины различных месторождений, ×100: а – Белое Глинище; b – Дарат; с – Федоровское Fig. 7. Shape of clay particles from different fields, ×100: a – Beloe Glinishche; b – Darat; c – Fedorovskoe

Рис. 8. Испытания по огнеупорности глины месторождения Белое Глинище:
1 — первоначальная масса образца; 2 — исходный образец; 3 — конечная масса образца
после выдержки в печи при t = 1400°C в течение 15 минут; 4 — образец после выдержки в печи;
5 — образец при t = 600°C; 6 — образец при t = 1400°C

Fig. 8. Tests of Beloe Glinishche clay on fire resistance: 1 - initial weight of the sample; 2 - initial sample; 3 - final weight of the sample after smelting in the furnace at t = 1400 °C during 15 minutes; 4 - sample after smelting in the furnace; 5 - sample at t = 600 °C; 6 - sample at t = 1400 °C

Также была испытана огнеупорность глины месторождения Белое Глинище. Исследования показали, что при выдержке

глины 1400°С в течение 30 мин. разупрочнения и деформации глины не происходит (рис. 8). Потеря веса за этот период – 5,5 %.

Заключение

Очевидно, что регулировать вязкость связки можно путем варьирования составом, формой твердой составляющей и при необходимости температурой суспензии. Низкое значение вязкости приводит к плохому сцеплению наполнителя со связкой, а значительная величина вязкости затрудняет обеспечение равномерности распределения связки по всему объему шамотной массы. Поэтому нанесение таких покрытий методами окунания и облива нецелесообразно. Использование глин месторождения Белое Глинище в шамотных массах и огнеупорных обмазках вследствие цилиндрической формы ее частиц в меньшей степени увеличивает вязкость суспензии, что дает возможность увеличить ее концентрацию.

Таким образом, для связки в шамотной массе предлагается глина месторождения Белое Глинище (Карагандинская область) в сочетании с мелкодисперсным шамотом в соотношении 60:25. Это способ-

ствует изготовлению огнеупорных кирпичей с оптимальной, равномерно распределенной, закрытой пористостью (10–15%), что, в свою очередь, повышает термоустойчивость огнеупоров и является важной характеристикой для их использования в разливочных ковшах. Испытания предложенной огнеупорной массы, проведенные при разливке стали в литейном цехе ТОО «КМЗ им. Пархоменко» (г. Караганда), показали (по сравнению с использованной ранее композицией на основе бентонитовой глины) увеличение срока службы футеровки на 20%.

Данные исследования проведены в рамках реализации гранта Комитета науки МОН РК АР05130230 «Разработка и внедрение технологии изготовления огнеупорных материалов для металлургической промышленности с оптимальной пористостью и повышенной термостойкостью».

Библиографический список

- 1. Темлянцев М.В., Запольская Е.М., Стерлигов В.В., Темлянцева Е.Н., Дегтярь В.А. Повышение энерготехнологической эффективности стендов высокотемпературного разогрева футеровок металлургических ковшей // Вестник горно-металлургической секции Российской академии естественных наук. Отделение металлургии. 2014. № 33. С. 38–44.
- 2. Фрейн М., Кендрик Р., Хопс В. Эффективная футеровка ковшей INSURAL ATL для алюминиевых сплавов // Литейное производство. 2015. № 9. С. 21–23.
- 3. Karja J., Nevala H., Oy R. Modern steel ladle lining and wear monitoring practise in Raahe Steel // 5th Unified International Technical Conference on Refractories a Worldwide Technology (Unitecr 97): Radisson hotel, New Orleans. 1997. Vol. 1–3. No. 4–7. P. 131–133.
- 4. Гладких И.В. Использование промышленных отходов для изготовления футеровки ковшей в литейном производстве машиностроительных заводов // Заготовительные производства в машиностроении. 2018. Т. 16. № 3. С. 106–109.

- 5. Hou Chang-Yu; Feng L.; Seleznev N. Low frequency complex dielectric (conductivity) response of dilute clay suspensions: Modeling and experiments // Journal of colloid and interface science. 2018. № 9. Vol. 525. P. 62–75.
- 6. Лесив Е.М., Безруких А.И., Беляев С.В., Юрьев П.О., Рассказова Е.В. Изменение прочности песчаноглинистых смесей от концентрации водно-глинистой суспензии и количества мусковита в ее составе // Литейное производство. 2016. № 6. С. 8–12.
- 7. Антошкина Е.Г., Смолко В.А. Влияние ультразвуковой обработки на вязкость водно-глинистых суспензий для песчано-глинистых смесей // Вестник Южно-Уральского государственного университета. Металлургия. 2017. Т. 17. № 2. С. 34–40.
- 8. Пастухов, А. Г., Минасян А.Г., Шарая О.А. Оценка напряженно-деформированного состояния сегмента прессвалкового измельчителя // Технология машиностроения. 2016. № 3. С. 43–46.
- 9. Ганин Д.Р., Дружков В.Г., Панычев А.А., Шаповалов А.Н. Пути использования местных минеральных ресурсов в агломерационном производстве АО

Металлургия и материаловедение Metallurgy and Materials Science

- «Уральская сталь» // Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2017. Т. 15. № 1. С. 20–26.
- 10. Abrougui M.M.; Bonhome-Espinosa A.B.; Bahri D. Rheological Properties of Clay Suspensions Treated by Hydrocyclone Process // Journal of nanofluids. 2018. No. 4. Vol. 7. P. 256–268.
- 11. Verma A., Chauhan G., Ojha K. Synergistic effects of polymer and bentonite clay on rheology and thermal stability of foam fluid developed for hydraulic fracturing. Asia-Pacific journal of chemical engineering. 2017. No. 4. Vol. 12. P. 872–883.
- 12. Kameda J., Morisaki T. Sensitivity of Clay Suspension Rheological Properties to pH, Temperature, Salinity, and Smectite-Quartz Ratio. Geophysical research letters. 2017. No. 10. Vol. 44. P. 9615–9621.
- 13. Цветкова Е.В. Влияние температурного воздействия на вязкость водно-глинистых суспензий // Университетский комплекс как региональный центр образования, науки и культуры: материалы Всерос. науч.-метод. конф. (г. Оренбург, 31 января 2 февраля 2018 г.). Оренбург, 2018. С. 2626—2630.
- 14. Исагулов А.З., Куликов В.Ю. Вывод уравнения прессования песчано-смоляных смесей и их реологические модели // Известия высших учебных заведений. Черная металлургия. 2007. № 6. С. 52–56.
- 15. Кидалов Н.А., Князева А.С., Безбабнова Т.Ю., Смирнова В.В. Влияние химических добавок на свойства бентонитовых водно-глинистых суспензий для песчано-глинистых смесей // Известия Волгоградского государственного технического университета. 2016. № 9 (188). С. 131–134.

Reference

- 1. Temlyantsev M.V., Zapolskaya E.M., Sterligov V.V., Temlyantseva E.N., Degtyar V.A. Improving energy technological efficiency of test-benches of a high-temperature heating up of metallurgical ladle linings. *Vestnik gorno-metallurgicheskoj sekcii Rossijskoj akademii estestvennyh nauk. Otdelenie metallurgii* [Bulletin of Mining and Metallurgical Section of the Russian Academy of Natural Sciences. Metallurgy], 2014, no. 33, pp. 38–44. (In Russian).
- 2. Frayn M., Kendrick R., Hops of Century. Effective lining of INSURAL ATL ladles for aluminum alloys. *Litejnoe proizvodstvo* [Foundry Production], 2015, no. 9, pp. 21–23. (In Russian).
- 3. Karja J., Nevala H., Oy R. Modern steel ladle lining and wear monitoring practice in Raahe Steel // 5th Unified International Technical Conference on Refractories a Worldwide Technology (Unitecr 97): Radisson hotel, New Orleans, 1997, vol. 1–3, no. 4–7, pp. 131–133.
- 4. Gladkikh I.V. Use of industrial wastes for manufacture of ladles lining in foundry of engineering plants. *Zagotovitel'nye proizvodstva v mashinostroenii* [Blanking Productions in Mechanical Engineering» (Press forging, foundry and other productions)], 2018, vol. 16, no. 3, pp. 106–109. (In Russian).
- 5. Hou Chang-Yu; Feng L.; Seleznev N. Low frequency complex dielectric (conductivity) response of dilute clay suspensions: Modeling and experiments. Journal of colloid and interface science. 2018, no. 9, vol. 525, pp. 62–75.
- 6. Lesiv E.M., Bezrukikh A.I., Belyaev S.V., Yuriev P.O., Rasskazova E.V. Investigation of the strength characteristics from the concentration water-clay suspension and amount of muscovite in sand-clay mixtures. *Litejnoe proizvodstvo* [Foundry Production], 2016, no. 6, pp. 8–12. (In Russian).
- 7. Antoshkina E.G., Smolko V.A. Influence of ultrasonic treatment on the viscosity of aqueous-clay suspensions for sand-clay mixtures. *Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta* [Bulletin of the South Ural State University. Ser. Metallurgy], 2017, vol. 17, no. 2, pp. 34–40. (In Russian).

- 8. Shepherds A.G., Minasyan A.G., Sharaya O.A. Evaluation of the stressed-deformed state of the segment of a press-roller grinder. *Tekhnologiya mashinostroeniya*. [Technology of Mechanical Engineering], 2016, no. 3, pp. 43–46. (In Russian).
- 9. Ganin D.R., Druzhkov V.G., Panychev A.A., Shapovalov A.N. Use of local mineral resources at the sintering plant of the "Ural Steel" Joint Stock Company. *Vestnik Magnitogorskogo gosudarstvennogo tekhnicheskogo universiteta im. G.I. Nosova* [Vestnik of Nosov Magnitogorsk State Technical University], 2017, vol.15, no. 1, pp. 20–26. (In Russian).
- 10. Abrougui M.M., Bonhome-Espinosa A.B., Bahri D. Rheological Properties of Clay Suspensions Treated by Hydrocyclone Process. Journal of nanofluids, 2018, no. 4, vol. 7, pp. 256–268.
- 11. Verma A.; Chauhan G.; Ojha K. Syynergistic effects of polymer and bentonite clay on rheology and thermal stability of foam fluid developed for hydraulic fracturing. Asia-Pacific journal of chemical engineering, 2017. no. 4, vol. 12, pp. 872–883.
- 12. Kameda J., Morisaki T. Sensitivity of Clay Suspension Rheological Properties to pH, Temperature, Salinity, and Smectite-Quartz Ratio. Geophysical research letters, 2017, no. 10, vol. 44, pp. 9615–9621.
- 13. Tsvetkova E.V. Vliyanie temperaturnogo vozdejstviya na vyazkost' vodno-glinistyh suspenzij [Influence of temperature impact on viscosity of water and clay suspensions]. Materialy Vserossijskoj nauchnometodicheskoj konferencii "Universitetskij kompleks kak regional'nyj centr obrazovaniya, nauki i kul'tury" [Proceedings of All-Russian scientific and methodological conference "University Complex as a Regional Center of Education, Science and Culture", Orenburg, January 31–February 2, 2018]. Orenburg, 2018, pp. 2626–2630. (In Russian).
- 14. Isagulov A.Z., Kulikov V.Yu. Deriving the equation of pressing of sand-pitch mixes and their rheological models. *Izvestiya vysshih uchebnyh zavedenij. Chernaya metallurgiya* [Izvestiya. Ferrous Metallurgy], 2007, no. 6, pp. 52–56. (In Russian).

Металлургия и материаловедениеMetallurgy and Materials Science

15. Kidalov N.A., Knyazeva A.S., Bezbabnova T.Yu., Smirnova V.V. Effects of chemical agents on the properties of bentonite water-clay suspension for sand-clay

mixtures. *Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta* [Izvestia VSTU], 2016, no. 9 (188), pp. 131–134. (In Russian).

Критерии авторства

Квон С.С., Куликов В.Ю., Достаева А.М., Щербакова Е.П., Аринова С.К., Ковалёва Т.В. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Authorship criteria

Kvon S.S., Kulikov V.Yu., Dostaeva A.M., Scherbakova E.P., Arinova S.K., Kovaleva T.V. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Металлургия и материаловедениеMetallurgy and Materials Science

Оригинальная статья / Original article УДК 661.84

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-143-150

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЛИГНОСУЛЬФОНАТА, АНИОННЫХ ПОВЕРХНОСТНО-АКТИВНЫХ ВЕЩЕСТВ И ИХ СМЕСЕЙ НА ПОКАЗАТЕЛИ АВТОКЛАВНОГО ВЫЩЕЛАЧИВАНИЯ ЦИНКОВОГО КОНЦЕНТРАТА

© Э.Б. Колмачихина¹, Е.А. Рыжкова², Д.В. Дмитриева³, К.А. Вакула⁴, М.А. Мокрецов⁵

Уральский федеральный университет им. первого Президента России Б.Н. Ельцина, 620002, Российская Федерация, г. Екатеринбург, ул. Мира, 17.

РЕЗЮМЕ. ЦЕЛЬ ИССЛЕДОВАНИЯ. Образование элементной серы при автоклавном выщелачивании сульфидных концентратов приводит к появлению серо-сульфидных гранул, что существенно снижает скорость растворения цинка. Решением данной проблемы стало применение поверхностно-активных веществ, которые препятствуют негативному влиянию расплавленной серы, позволяют избежать процесса гранулообразования при выщелачивании. Лигносульфонаты (отходы деревообрабатывающей промышленности) являются наиболее распространенными поверхностно-активными веществами, используемыми при автоклавном выщелачивании сульфидных концентратов. В данной работе изучено влияние добавок анионных поверхностно-активных веществ и их смесей с лигносульфонатом на поверхностное натяжение водных растворов, извлечение цинка и гранулометрический состав кеков после автоклавного выщелачивания сульфидных цинковых концентратов. МЕТОДЫ. Поверхностное натяжение растворов определяли сталагмометрическим методом. Выщелачивание проводили в титановом автоклаве в присутствии лигносульфоната, додецилбензолсульфоната натрия и додецилсульфата натрия. Растворы после выщелачивания анализировали на содержание цинка методом атомно-абсорбционной спектроскопии. Гранулометрический анализ кека проводили с помощью лазерного дифракционного анализатора частиц. РЕЗУЛЬ-ТАТЫ. В работе показано синергетическое влияние анионных поверхностно-активных веществ и лигносульфоната на снижение поверхностного натяжения водных растворов. Наиболее сильный эффект наблюдается при использовании композиции лигносульфоната додецилбензолсульфоната ЛС-ДДБСН, а именно в диапазоне концентраций додецилбензолсульфоната натрия 400-600 мг/дм³. Применение комбинированных поверхностно-активных вешеств позволило получить высокие показатели извлечения цинка и оптимальную крупность частиц кека. При совместном использовании лигносульфоната с додецилбензолсульфонатом натрия извлечение цинка увеличилось с 77,2% до 82,8%, при этом основная часть кека (96,7%) имела крупность 150 мкм. ЗАКЛЮЧЕНИЕ. Использование комбинированных поверхностно-активных веществ (лигносульфонат и додецилбензолсульфонат натрия) может быть рекомендовано для использования при автоклавном выщелачивании сульфидных цинковых концентратов. Ключевые слова: цинковые концентраты, автоклавное выщелачивание, поверхностно-активные вещества, комбинированные поверхностно-активные вещества, гранулометрический анализ, поверхностное натяжение.

Информация о статье. Дата поступления 18 июня 2018 г.; дата принятия к печати 19 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования: Колмачихина Э.Б., Рыжкова Е.А., Дмитриева Д.В., Вакула К.А., Мокрецов М.А. Исследование влияния лигносульфоната, анионных поверхностно-активных веществ и их смесей на показатели авто-клавного выщелачивания цинкового концентрата // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 143–150. DOI: 10.21285/1814-3520-2018-8-143-150

¹Колмачихина Эльвира Барыевна, кандидат технических наук, ведущий инженер кафедры металлургии цветных металлов, e-mail: e.b.khazieva@urfu.ru

Elvira B. Kolmachikhina, Candidate of technical sciences, Leading Engineer of the Department of Non-Ferrous Metals, e-mail: e.b.khazieva@urfu.ru

²Рыжкова Екатерина Александровна, магистрант, e-mail: krizhkova@gmail.com

Ekaterina A. Ryzhkova, Master's degree student at, e-mail: krizhkova@gmail.com

³Дмитриева Дарья Вадимовна, магистрант, e-mail: darya.dmitrieva.1994@bk.ru

Darya V. Dmitrieva, Master's degree student at, e-mail: darya.dmitrieva.1994@bk.ru

⁴Вакула Кирилл Андреевич, студент, e-mail: kirillvakula1997@mail.ru

Kirill A. Vakula, Student, e-mail: kirillvakula1997@mail.ru

⁵Мокрецов Максим Андреевич, студент, e-mail: mokretsovm@list.ru

Maksim A. Mokretsov, Student, e-mail: mokretsovm@list.ru

Металлургия и материаловедениеMetallurgy and Materials Science

STUDY OF LIGNOSULFONATE, ANIONIC SURFACTANTS AND THEIR MIXTURE EFFECT ON ZINC CONCENTRATE PRESSURE LEACHING

E.B. Kolmachikhina, E.A. Ryzhkova, D.V. Dmitrieva, K.A. Vakula, M.A. Mokretsov

Ural Federal University named after the first President of Russia B.N. Yeltsin (UFU), 17, Mira St., Ekaterinburg, 620002, Russian Federation

ABSTRACT. PURPOSE. Formation of elemental sulfur under sulfide concentrate pressure leaching leads to the emergence of sulfur-sulfide granules which significantly reduce the rate of zinc dissolution. This problem can be solved through the application of surfactants preventing the negative effect of molten sulfur, and allowing to avoid granule formation under leaching. Lignosulfonates (woodworking industry waste) are the surfactants most widely used for sulfide concentrate pressure leaching. This paper studies the effect of the additives of anionic surfactants and their mixtures with lignosulfonate on the surface tension of aqueous solutions, zinc extraction and grain size distribution of cakes after sulfide zinc concentrate pressure leaching. METHODS. Surface tension of aqueous solutions was determied by a stalagmometric method. Leaching was performed in a titanium autoclave in the presence of lignosulfonate, sodium dodecyl benzene sulfonate and sodium dodecyl sulfate. After leaching the solutions were analyzed on zinc content using an atomic absorption spectroscopy. Grain size analysis of cakes was carried out by a laser diffraction particle size analyzer. RESULTS. The work has shown a synergetic influence of anionic surfactants and lignosulfonate on the decrease of aqueous solution surface tension. The greatest effect has the mixture of lignosulfonate and dodecyl benzene sulfonate (LS-DBS), namely in the range of sodium dodecyl benzene sulfonate (SDBS) concentrations of 400-600 mg/dm³. The use of composite surfactants has allowed to obtain high indices of zinc extraction and optimal particle size of cakes after leaching. When lignosulfonate (LS) and SDBS are used in combination the extraction of zinc increases from 77.2% up to 82.8%, whereas the bulk of the cake (96.7%) has a particle size of -150 µm. CONCLUSION. The composite surfactants (lignosulfonate and sodium dodecyl benzene sulfonate) can be recommended for use at pressure leaching of sulfide zinc concentrates.

Keywords: zinc concentrates, pressure leaching, surfactants, composite surfactants, gain size distribution analysis, surface tension

Information about the article. Received June 18, 2018; accepted for publication July 19, 2018; available online August 31, 2018.

For citation. Kolmachikhina E.B., Ryzhkova E.A., Dmitrieva D.V., Vakula K.A., Mokretsov M.A. Study of lignosulfonate, anionic surfactants and their mixture effect on zinc concentrate pressure leaching. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 143–150. DOI: 10.21285/1814-3520-2018-8-143-150. (In Russian).

Введение

Автоклавные технологии получения металлов из сульфидного сырья в последнее время приобрели большую актуальность ввиду их экологичности, возможности переработки бедного сырья и извлечения сопутствующих элементов [1-3]. Образование элементной серы при автоклавном выщелачивании сульфидных концентратов приводит к появлению серо-сульфидных гранул и плавов, а также к последующей аварийной остановке автоклава [4, 5]. Решением данной проблемы стало применение лигносульфонатов. Однако состав лигносульфонатов (молекулярная масса, содержание гидроксильных, карбоксильных, сульфоновых групп) непостоянный и варьируется в зависимости от породы перерабатываемой древесины, условий делигнификации, добавок ионов металлов [6].

В работах Т.Н. Луговицкой [7, 8] всесторонне исследовано влияние состава электролитов на поверхностную активность лигносульфонатов с различной молекулярной массой. Показано, что наибольший эффект в снижении поверхностного натяжения вносят высокомолекулярные фракции лигносульфонатов, что связано с их меньшим гидролизом и диссоциацией, по сравнению со средне- и низкомолекулярными образцами.

Кроме того, весьма актуальной задачей является создание композиций поверхностно-активных веществ (ПАВ), позволяющих усилить индивидуальное действие реагентов. Известно, что совместная добавка

лигносульфоната додецилсульфата И натрия приводит к снижению критической концентрации мицеллообразования [9]. Взаимодействие додецилбензолсульфоната натрия с полиметакриловой кислотой может сопровождаться образованием межмолекулярных агрегатов [10], что приводит к значительному изменению поверхностных свойств. Использование комбинированного ПАВ (лигносульфонат+водорастворимые сульфонаты) при автоклавном выщелачиваникель-пирротиновых концентратов позволило повысить степень разложения пирротина, увеличить извлечение металлов платиновой группы из остатков выщелачивания [4, 11]. Синергетическое действие комбинированных ПАВ позволяет значительно снизить поверхностное натяжение растворов, что используется для интенсификации выщелачивания руд и концентратов [12].

Данная работа посвящена исследованию совместного действия лигносульфоната и анионных ПАВ: додецилсульфат натрия (ДСН), додецилбензолсульфонат натрия (ДДБСН) на поверхностное натяжение водных растворов и показатели автоклавного выщелачивания цинковых концентратов.

Описание методики эксперимента

Для проведения экспериментов использовали лигносульфонат натрия (Соликамский ЦБК), додецилбензолсульфонат натрия и додецилсульфат натрия. Поверхностное натяжение растворов индивидуальных ПАВ и их смесей определяли сталагмометрическим методом при 298 К.

Для анализа использовали водные растворы и растворы серной кислоты (100 г/дм 3); концентрацию ПАВ в растворах варьировали от 200 до 800 мг/дм 3 .

Автоклавное выщелачивание проводили в присутствии индивидуальных ПАВ и

их смесей на сульфидных цинковых концентратах Учалинского месторождения следующего состава, %: 44,2 Zn; 8,16 Fe, 1,22 Cu; 29,2 S. Опыты по автоклавному выщелачиванию проводили при 423 К в течение 1 часа в титановом автоклаве при давлении кислорода 5 МПа, концентрации серной кислоты 160 г/дм³ и Ж:Т = 5:1. Растворы после выщелачивания анализировали на содержание цинка, гранулометрический анализ кека после выщелачивания проводили с помощью лазерного дифракционного анализатора размера частиц HELOS&RODOS (Sympatec GmbH, Германия).

Результаты экспериментов

Снижение поверхностного натяжения водных растворов в присутствии индивидуальных и комбинированных ПАВ является косвенным показателем эффективности применения исследуемых реагентов при автоклавном выщелачивании. Тензиометрические исследования (рис. 1, 2) свидетельствуют о низкой поверхностной активности лигносульфонатов, поверхностное натяжение растворов находится в диапазоне 70–72 мН/м. Анионные ПАВ, ДСН и додецилбензолсульфоната (ДДБСН) интенсивно снижают поверхностное натяжение воды с 72,0 мН/м до 20,6 мН/м и 38,0 мН/м, соответственно, при концентрации 800

мг/дм³. Действие лигносульфонатов при автоклавном выщелачивании вероятнее всего сводится к стабилизации частиц серы за счет образования структурно-механического барьера, а высокая поверхностная активность анионных ПАВ способствует увеличению смачиваемости сульфидов водными растворами и, соответственно, уменьшению смачиваемости серой. На рис. 1 *b* в диапазоне концентраций ДДБСН 350–450 мг/дм³ наблюдается изгиб, свидетельствующий о достижении критической концентрации мицеллообразования (ККМ) (420 мг/дм³ [13]), на рис. 1 *а* подобный изгиб не зафиксирован, так как ККМ для ДСН составляет

2,4 г/дм³ [14]. При добавлении серной кислоты к раствору ДДБСН (рис. 2 *b*) поверхностное натяжение оставалось прежним, но добавка серной кислоты к раствору ДСН

(рис. 2 а) привела к значительному снижению поверхностного натяжения и достижению ККМ уже при ≈ 200 мг/дм³.



Рис. 1. Изменение поверхностного натяжения водных растворов ПАВ и их смесей:

а — Влияние концентрации ЛС, ДСН и их смесей: • — ЛС; ▲ — ДСН; ■ - 200 мг/дм³ ЛС+ДСН; • - 400 мг/дм³
ЛС+ДСН; — - 800 мг/дм³ ЛС+ДСН; b — Влияние концентрации ЛС, ДДБСН и их смесей: • — ЛС; ■ — ДДБСН;

▲ - 200 мг/дм³ ЛС+ДДБСН; • - 400 мг/дм³ ЛС+ДДБСН; — - 800 мг/дм³ ЛС+ДДБСН

Fig. 1. Variation of surface tension of surfactant aqueous solutions and their mixtures: a — effect of LS, SDS (sodium dodecyl sulphate) concentration and their mixtures: • — LS; ▲ — SDS; ■ - 200 mg/dm³ of LS+SDS;

• - 400 mg/dm³ of LS+SDS; — - 800 mg/dm³ of LS+SDS; • - 400 mg/dm³ of LS+SDBS; — - 800 mg/dm³ of LS+SDBS

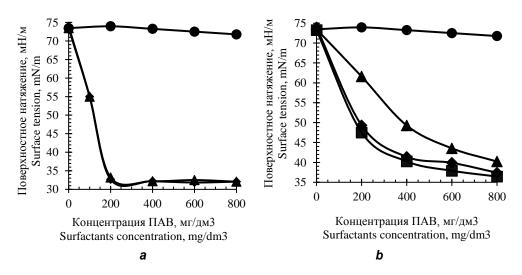


Рис. 2. Изменение поверхностного натяжения сернокислых растворов ПАВ и их смесей: а – Влияние концентрации ЛС, ДСН и их смесей: • – ЛС; ▲ – ДСН; • - 200 мг/дм³ ЛС+ДСН; b – Влияние концентрации ЛС, ДДБСН и их смесей: • – ЛС; ▲ – ДДБСН; • - 200 мг/дм³ ЛС+ДДБСН; ■ - 400 мг/дм³ ЛС+ДДБСН Fig. 2. Variation of surface tension of sulfuric acid solutions of surfactants and their mixtures: a – effect of LS, SDS and their mixtures concentration: • – LS; ▲ – SDS; • - 200 mg/dm³ of LS+SDS; b – effect of LS, SDBS and their mixtures concentration: • – LS; ▲ – SDBS; • - 200 mg/dm³ of LS+SDBS; ■ - 400 mg/dm³ of LS+SDBS

Добавка небольшого количества лигносульфоната (ЛС) (200–400 мг/дм³) к ДСН не приводит к снижению поверхностного натяжения (рис. 1 а), только при более высоких концентрациях ЛС (800 мг/дм³) удается достичь заметного уменьшения поверхностного натяжения на 10,0–11,3% по сравнению с растворами ДСН. В кислой среде (рис. 2 а) синергетический эффект снижения поверхностного натяжения в присутствии смеси ЛС и ДСН исчезает.

Заметный синергетический эффект был зафиксирован в присутствии смеси ЛС и ДДБСН, когда поверхностное натяжение водных и сернокислых растворов интенсивно снижалось при повышении концентрации ЛС в композиции. Причем наиболее заметный эффект проявлялся в диапазоне концентраций ДДБСН 400-600 мг/дм³. Кроме того, ККМ растворов композиции ЛС и ДДБСН уменьшается с ростом концентрации ЛС. Так, например, в сернокислом растворе ККМ раствора ДДБСН составляла ≈ 450 мг/дм 3 , а в присутствии 200 мг/дм 3 ЛС ККМ снизилось до 250-300 мг/дм³. Предполагается [15], что снижение поверхностного натяжения растворов в присутствии смесей ПАВ связано с гидрофобными взаимодействиями углеводородных радикалов ПАВ и гидрофобными участками полимерных цепей, происходит адсорбция молекул низкомолекулярных ПАВ на полимерной цепи лигносульфоната, обусловливает **4T0**

уменьшение критической концентрации мицеллообразования ПАВ.

Результаты анализа крупности частиц кеков после выщелачивания (рис. 3) свидетельствуют о значительном стабилизирующем действии лигносульфоната, в присутствии которого содержание фракции - 150 мкм увеличилось с 80,2 до 91,5% в отсутствие реагентов и в присутствии 400 мгдм³ лигносульфоната, соответственно, а извлечение цинка возросло с 49,2 % до 77,2% (таблица). Оптимальный для флотационного обогащения кек был получен при добавке 800 мг/дм³ лигносульфоната, 97,5% частиц кека имели крупность –150 мкм.

Однако при флотационной переработке цинковых кеков возникают сложности с переработкой материала меньше 10 мкм. Как известно, лигносульфонаты приводят к переизмельчению частиц серы при выщелачивании. В полученных нами результатах также было зафиксировано сильное диспергирующее действие лигносульфоната: содержание фракции -10 мкм увеличилось с 8,39% – в отсутствие реагентов – до 14,11% и 26,93% при добавке 400 мг/дм³ и 800 мг/дм³ лигносульфоната соответственно.

На примере автоклавной технологии переработки никель-пирротиновых концентратов известно [4, 11], что совместная добавка лигносульфоната с высокомолекулярными нефтепродуктами позволяет получить кек оптимальной крупности (10–150 мкм) и

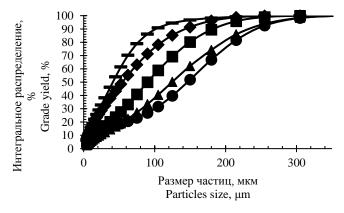


Рис. 3. Гранулометрический состав кеков после выщелачивания цинкового концентрата в присутствии индивидуальных и комбинированных ПАВ: — – без ПАВ, ◆ – ЛС 400 мг/дм³; ◆ – ДСН 200 мг/дм³, ДДБСН 200 мг/дм³; ▲ – ЛС 400 мг/дм³+ДСН 200 мг/дм³; — - ЛС 400 мг/дм³ + ДДБСН 200 мг/дм³. Fig. 3. Grain-size distribution of cakes after leaching of zinc concentrate in the presence of individual and composite surfactants: — – free of surfactants, ◆ –400 mg/dm³ of LS; ◆ – 200 mg/dm³ of SDS, 200 mg/dm³ of SDS; — - 400 mg/dm³ of LS + 200 mg/dm³ of SDSS

Металлургия и материаловедениеMetallurgy and Materials Science

Влияние реагентов и их смесей на извлечение цинка при автоклавном выщелачивании сульфидного цинкового концентрата Surfactants and their mixtures effect on zinc extraction at sulfide zinc concentrate pressure leaching

Концентрация реагентов, мг/дм ³			Извлечение цинка
ЛС / Ls	ДСH/SDS	ДДБСН/SDBS	ч извлечение цинка
_	_	_	49,2
400	_	_	77,2
_	200	_	52,4
_	_	200	58,8
400	200	_	76,6
400	_	200	82,8

увеличить скорость разложения пирротина. Ввиду заметного снижения поверхностного натяжения водных растворов в присутствии смесей лигносульфоната с анионными ПАВ нами было также изучено влияние данных реагентов на извлечение цинка и крупность частиц кека после автоклавного выщелачивания.

При добавлении 200 мг/дм³ ДДБСН и ДСН зафиксировано увеличение размеров частиц кека до 48,13 % +150 мкм, содержание класса -10 мкм составило 9%. Извлечение цинка при добавлении анионных ПАВ находилось в диапазоне 52–59% (таблица). Совместная добавка ДДБСН и лигносульфоната (рис. 3) позволила получить дис-

персный кек: 96,7% и 13,2% фракций -150 мкм и -10 мкм соответственно; извлечение цинка при этом увеличилось на 5,6 %. Смесь «ДСН-лигносульфонат» не оказала значительного влияния на крупность частиц кека, содержание фракции -150 мкм составило 62,16%, -10 мкм – 5%, а извлечение цинка практически не изменилось по сравнению с опытом без добавления ЛС.

Таким образом, смесь ПАВ «ДДБСНлигносульфонат» позволяет повысить извлечение цинка, получить оптимальную крупность частиц кека за счет снижения смачиваемости сульфидов цинка расплавленной серой (ДДБСН), стабилизации капель серы (лигносульфонат).

Заключение

Данная работа посвящена изучению влияния добавок смесей анионных поверхностно-активных веществ с лигносульфонатом натрия на показатели автоклавного выщелачивания цинковых концентратов. С целью дополнительной оценки эффективности данных смесей были исследованы закономерности изменения поверхностного натяжения растворов. На основе полученных результатов были сделаны следующие выводы и рекомендации:

1) совместная добавка лигносульфоната с додецилсульфатом натрия или додецилбензолсульфонатом натрия приводит к

значительному снижению поверхностного натяжения за счет уменьшения критической концентрации мицеллообразования;

2) использование комбинированных поверхностно-активных веществ позволяет повысить извлечение цинка с 77,2% до 82,8% и получить кек с частицами оптимальной крупности (10–150 мкм).

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-38-00388.

The reported study was funded by RFBR according to the research project № 18-38-00388.

Металлургия и материаловедение Metallurgy and Materials Science

Библиографический список

- 1. Sadeghi N., Moghaddam J., Ilkhchi M.J. Determination of effective parameters in pilot scale direct leaching of a zinc sulfide concentrate. Physicochemical Problems of Mineral Processing. 2017. Vol. 53. No. 1. P. 601–616. DOI: 10.5277/ppmp170147
- 2. Xu B., Yang Y., Li Q., Jiang T., Li G. Stage leaching of a complex polymetallic sulfide concentrate: Focus on the extraction of Ag and Au. Hydrometallurgy. 2016. Vol. 159. P. 87–94. DOI: 10.1016/j.hydromet.2015.10.008
- 3. Zhukov V.V., Laari A., Lampinen M., Koiranen T. A mechanistic kinetic model for direct pressure leaching of iron containing sphalerite concentrate. Chemical Engineering Research and Design. 2017. Vol. 118. P. 131–141. DOI: 10.1016/j.cherd.2016.12.004
- 4. Naftal M.N., Naboychenko S.S., Sharkiy R.Yu., Petrov A.F., Lapshina N.A. Increasing of extraction of nickel and platinum group metals in technology of autoclave oxidation leaching of nickel-pyrrhotine concentrates. Tsvetnye Metally. 2013. No. 9. P. 100–113.
- 5. Jorjani E., Ghahreman A. Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues. Hydrometallurgy. 2017. Vol. 171. P. 333–343. DOI: 10.1016/j.hydromet.2017.06.011 6. Ouyang X., Qiu X., Chen P. Physicochemical characterization of calcium lignosulfonate A potentially useful water reducer. Colloid and Surfaces A: Physicochemical and Engineering Aspects. 2006. Vol. 282–283. P. 489–497. DOI: 10.1016/j.colsurfa.2005.12.020
- 7. Lugovitskaya T.N., Naboichenko S.S., Bolatbaev K.N., Mamyachenkov S.V. Effect of lignosulfonates on the dispersion characteristics of elementary sulfur and zinc sulfide in aqueous suspension. Russian Journal of Non-Ferrous Metals. 2007. Vol. 48. No. 5. P. 327–330. DOI: 10.3103/S1067821207050033
- 8. Lugovitskaya T.N., Naboichenko S.S., Bolatbaev K.N. Relationships of lignosulfonate adsorption onto the zinc sulfide surface. Russian Journal of Applied Chemistry. 2016. Vol. 89. No. 11. P. 1831–1837. DOI:

- 10.1134/S1070427216110148
- 9. Rana D., Neale G.N., Hornof V. Surface tension of mixed surfactant systems: lignosulfonate and sodium dodecyl sulfate. Colloid and Polymer Science. 2002. Vol. 280. No. 8. P. 775–778. DOI: 10.1007/s00396-002-0687-y
- 10. Pu B., Chen D. A study of the measurement of surface and interfacial tension by the maximum liquid drop volume method: I. Using a back-suction syringe technique. Journal of Colloid and Interface Science. 2001. Vol. 235. No. 2. P. 262–272. DOI: 10.1006/jcis.2000.7385
- 11. Naftal' M.N., Naboichenko S.S., Salimzhanova E.V., Bol'shakova O.V., Saverskaya T.P. Influence of various stabilizing factors on an elemental sulfur emulsion during high-temperature leaching of nickel-pyrrhotine concentrates. Russian Metallurgy (Metally). 2015. Vol. 2015. No. 3. P. 171–184. DOI: 10.1134/S0036029515030052 12. Tan K., Li C., Liu J., Qu H., Xia L., Hu Y., Li Y. A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits. Hydrometallurgy. 2014. Vol. 150. P. 99–106. DOI: 10.1016/j.hydromet.2014.10.001
- 13. Duan M., Ding Z., Wang H., Xiong Y., Fang S. Shi P., Liu S. Evolution of oil/water interface in the presence of SDBS detected by dual polarization interferometry. Applied Surface Science. 2018. Vol. 427. P. 917–926. DOI: 10.1016/j.apsusc.2017.09.054
- 14. Niraula T.P., Shah S.K., Chatterjee S.K., Bhattarai A. Effect of methanol on surface tension and viscosity of so-diumdodecyl sulfate (SDS) in aqueous medium at 298.15-323.15 K. Karbala International Journal of Modern Science. 2018. Vol. 4. No. 1. P. 26–34. DOI: 10.1021/acs.jced.6b00978
- 15. Lugovitskaya T.N., Naboichenko S.S. Physicochemical properties of aqueous solutions of binary mixtures of lignin derivatives and sodium dodecyl sulfate. Russian Journal of Applied Chemistry. 2018. Vol. 1. No. 1. P. 82–89. DOI: 10.1134/S1070427218010135

References

- 1. Sadeghi N., Moghaddam J., Ilkhchi M.J. Determination of effective parameters in pilot scale direct leaching of a zinc sulfide concentrate. Physicochemical Problems of Mineral Processing, 2017, vol. 53, no. 1, pp. 601–616. DOI: 10.5277/ppmp170147
- 2. Xu B., Yang Y., Li Q., Jiang T., Li G. Stage leaching of a complex polymetallic sulfide concentrate: Focus on the extraction of Ag and Au. Hydrometallurgy, 2016, vol. 159, pp. 87–94. DOI: 10.1016/j.hydromet.2015.10.008
- 3. Zhukov V.V., Laari A., Lampinen M., Koiranen T. A mechanistic kinetic model for direct pressure leaching of iron containing sphalerite concentrate. Chemical Engineering Research and Design, 2017, vol. 118, pp. 131–141. DOI: 10.1016/j.cherd.2016.12.004
- 4. Naftal M.N., Naboychenko S.S., Sharkiy R.Yu., Petrov A.F., Lapshina N.A. Increasing of extraction of nickel and

- platinum group metals in technology of autoclave oxidation leaching of nickel-pyrrhotine concentrates. Tsvetnye Metally, 2013, no. 9, pp. 100–113.
- 5. Jorjani E., Ghahreman A. Challenges with elemental sulfur removal during the leaching of copper and zinc sulfides, and from the residues. Hydrometallurgy, 2017, vol. 171, pp. 333–343. DOI: 10.1016/j.hydromet.2017.06.011 6. Ouyang X., Qiu X., Chen P. Physicochemical characterization of calcium lignosulfonate A potentially useful water reducer. Colloid and Surfaces A: Physicochemical and Engineering Aspects, 2006, vol. 282–283, pp. 489–497. DOI: 10.1016/j.colsurfa.2005.12.020
- 7. Lugovitskaya T.N., Naboichenko S.S., Bolatbaev K.N., Mamyachenkov S.V. Effect of lignosulfonates on the dispersion characteristics of elementary sulfur and zinc sulfide in aqueous suspension. Russian Journal of Non-Ferrous Metals, 2007, vol. 48, no. 5, pp. 327–330.

Металлургия и материаловедениеMetallurgy and Materials Science

DOI: 10.3103/S1067821207050033

- 8. Lugovitskaya T.N., Naboichenko S.S., Bolatbaev K.N. Relationships of lignosulfonate adsorption onto the zinc sulfide surface. Russian Journal of Applied Chemistry, 2016, vol. 89, no. 11, pp. 1831–1837. DOI: 10.1134/S1070427216110148
- 9. Rana D., Neale G.N., Hornof V. Surface tension of mixed surfactant systems: lignosulfonate and sodium dodecyl sulfate. Colloid and Polymer Science, 2002, vol. 280, no. 8, pp. 775–778. DOI: 10.1007/s00396-002-0687-v
- 10. Pu B., Chen D. A study of the measurement of surface and interfacial tension by the maximum liquid drop volume method: I. Using a back-suction syringe technique. Journal of Colloid and Interface Science, 2001, vol. 235, no. 2, pp. 262–272. DOI: 10.1006/jcis.2000.7385
- 11. Naftal' M.N., Naboichenko S.S., Salimzhanova E.V., Bol'shakova O.V., Saverskaya T.P. Influence of various stabilizing factors on an elemental sulfur emulsion during high-temperature leaching of nickel-pyrrhotine concentrates. Russian Metallurgy (Metally), 2015, vol. 2015, no.

Критерии авторства

Колмачихина Э.Б., Рыжкова Е.А., Дмитриева Д.В., Вакула К.А., Мокрецов М.А. имеют равные авторские права и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

- 3, pp. 171-184. DOI: 10.1134/S0036029515030052
- 12. Tan K., Li C., Liu J., Qu H., Xia L., Hu Y., Li Y. A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits. Hydrometallurgy, 2014, vol. 150, pp. 99–106. DOI: 10.1016/j.hydromet.2014.10.001
- 13. Duan M., Ding Z., Wang H., Xiong Y., Fang S. Shi P., Liu S. Evolution of oil/water interface in the presence of SDBS detected by dual polarization interferometry. Applied Surface Science, 2018, vol. 427, pp. 917–926. DOI: 10.1016/j.apsusc.2017.09.054
- 14. Niraula T.P., Shah S.K., Chatterjee S.K., Bhattarai A. Effect of methanol on surface tension and viscosity of so-diumdodecyl sulfate (SDS) in aqueous medium at 298.15-323.15 K. Karbala International Journal of Modern Science, 2018, vol. 4, no. 1, pp. 26–34. DOI: 10.1021/acs.jced.6b00978
- 15. Lugovitskaya T.N., Naboichenko S.S. Physicochemical properties of aqueous solutions of binary mixtures of lignin derivatives and sodium dodecyl sulfate. Russian Journal of Applied Chemistry, 2018, vol. 01, no. 1, pp. 82–89. DOI: 10.1134/S1070427218010135

Authorship criteria

Kolmachikhina E.B., Ryzhkova E.A., Dmitrieva D.V., Vakula K.A., Mokretsov M.A. have equal author's rights and bear equal responsibility for plagiarism.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Металлургия и материаловедениеMetallurgy and Materials Science

Оригинальная статья / Original article УДК 669.713.7; 669.054.83

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-151-162

ИЗУЧЕНИЕ ПРОЦЕССА ИЗВЛЕЧЕНИЯ ФТОРА ИЗ ОГНЕУПОРНОЙ ЧАСТИ ОТРАБОТАННОЙ ФУТЕРОВКИ ЭЛЕКТРОЛИЗЕРОВ ПРОИЗВОДСТВА АЛЮМИНИЯ

© А.А. Петровский¹, Н.В. Немчинова², Э.П. Ржечицкий³

Иркутский национальный исследовательский технический университет, 664074, Российская Федерация, г. Иркутск, ул. Лермонтова, 83.

РЕЗЮМЕ. ЦЕЛЬ. Изучение химического состава объекта исследований – огнеупорной части отработанной футеровки электролизеров производства алюминия и процесса извлечения фтора из нее гидрометаллургическим методом. Также изучение влияния параметров водного выщелачивания (продолжительность и температура) на извлечение фтора в раствор и оценка термодинамической вероятности реакций взаимодействия компонентов футеровки с различными растворителями при выщелачивании. МЕТОДЫ. Для изучения состава проб использовались методы рентгенофлуоресцентного и рентгенофазового анализа, а также сканирующая электронная микроскопия. Для измерения рН и концентрации водорастворимых форм фторидов использовали анализатор жидкости ЭКС-ПЕРТ-001 с комбинированным рН-электродом ЭСК-10601/7 К80.7 и ионселективным электродом ЭЛИТ-221 компании «НИКА». РЕЗУЛЬТАТЫ. Проведено изучение химического состава объекта исследований. Изучено влияние температуры и продолжительности процесса на извлечение фтора из отработанной футеровки при переводе водорастворимого NaF в раствор. Проведены термодинамические расчеты реакций взаимодействия основных фторсодержащих компонентов футеровки (криолита Na₃AIF₆, хиолита Na₅AI₃F₁₄, фторида кальция CaF₂) с растворами гидроксида, карбоната и гидрокарбоната натрия при выщелачивании. ЗАКЛЮЧЕНИЕ. На основе проведенных лабораторных исследований установлено, что максимальное извлечение фтора – 62,95% – достигается при температуре 60°C и продолжительности 120 мин. при водном выщелачивании. На основе термодинамических расчетов и проведенных экспериментов предложена принципиальная технологическая схема для получения регенерационного криолита из растворов выщелачивания при использовании растворов бикарбоната натрия либо растворов газоочистки и шламовых вод действующего предприятия по производству первичного алюминия.

Ключевые слова: электролизер, отработанная футеровка, огнеупорная часть футеровки, выщелачивание, термодинамика, регенерационный криолит.

Информация о статье. Дата поступления 25 июня 2018 г.; дата принятия к печати 27 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования: Петровский А.А., Немчинова Н.В., Ржечицкий Э.П. Изучение процесса извлечения фтора из огнеупорной части отработанной футеровки электролизеров производства алюминия // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 151–162. DOI: 10.21285/1814-3520-2018-8-151-162

STUDY OF FLUORINE RECOVERY FROM THE SPENT LINING REFRACTORY PART OF ALUMINUM PRODUCTION ELECTROLYSERS

A.A. Petrovsky, N.V. Nemchinova, E.P. Rzhechitsky

¹Петровский Алексей Анатольевич, инженер отдела инновационных технологий Физико-технического института, e-mail: begimotus@mail.ru

Aleksei A. Petrovsky, Engineer of the Department of Innovative Technologies of the Physico-Technical Institute, e-mail: begimotus@mail.ru

²Немчинова Нина Владимировна, профессор, доктор технических наук, заведующая кафедрой металлургии цветных металлов, e-mail: ninavn@yandex.ru

Nina V. Nemchinova, Professor, Doctor of technical sciences, Head of the Department of Non-Ferrous Metals Metallurgy, e-mail: ninavn@yandex.ru

³Ржечицкий Эдвард Петрович, кандидат технический наук, старший научный сотрудник отдела инновационных технологий Физико-технического института, e-mail: epr523@gmail.com

Edvard P. Rzhechitsky, Candidate of technical sciences, Senior Researcher the Department of Innovative technologies of the Physico-Technical Institute, e-mail: epr523@gmail.com

0

Металлургия и материаловедениеMetallurgy and Materials Science

Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russian Federation

ABSTRACT. The PURPOSE of the paper is to study the chemical composition of the research object represented by the refractory part of the spent lining (SL) of aluminum electrolysers and to investigate the process of fluorine recovery from the spent lining refractory part by a hydro-metallurgical method. The study is also given to the influence of aqueous leaching parameters (duration and temperature) on the fluorine recovery into solution and the evaluation of the thermodynamic probability of reactions between the lining components and various solvents under leaching. METHODS. The methods of x-ray fluorescence and x-ray phase analysis as well as scanning electron microscopy are used to study the composition of samples. The liquid analyzer EXPERT-001 with a combined pH electrode ESK-10601/7 K80.7 and an ion selective electrode ELITE-221 of Nika company are used to measure the pH and concentration of water-soluble forms of fluorides. RESULTS. The chemical composition of the research object has been studied. The influence of process temperature and duration on fluorine recovery from the spent lining under water-soluble NaF dissolution has been investigated. The thermodynamic calculations of interaction reactions of the main fluorine-containing components of lining such as cryolite Na₃AlF₆, chiolite Na₅Al₃F₁₄, calcium fluoride CaF₂ with the solutions of sodium hydroxide, carbonate and hydro-carbonate under leaching have been performed. CONCLUSION. Conducted laboratory studies allowed to determine that the maximum fluorine recovery of 62.95% is achieved under water leaching at the temperature of 60°C and process duration of 120 minutes. Based on thermodynamic calculations and performed experiments a basic technological scheme is proposed for regenerative cryolite production from leaching solutions using either the solutions of sodium bicarbonate or the solutions of gas purification and slime waters of operating plants of primary aluminum production.

Keywords: electrolyser, spent lining, refractory part of lining, leaching, thermodynamics, regenerative cryolite

Information about the article. Received June 25, 2018; accepted for publication July 27, 2018; available online August 31, 2018.

For citation. Petrovsky A.A., Nemchinova N.V., Rzhechitsky E.P. Study of fluorine recovery from the spent lining refractory part of aluminum production electrolysers. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 151–162. DOI: 10.21285/1814-3520-2018-8-151-162. (In Russian).

Введение

Получение первичного алюминия электролизом криолит-глиноземных расплавов на ваннах с анодом Содерберга сопровождается образованием различного вида техногенного фторсодержащего сырья: хвостов флотации при переработке угольной пены, пыли электрофильтров и шламов «мокрой» газоочистки, отработанной футеровки (ОФ) катодного устройства электролизеров при их отключении на капитальный ремонт [1–3].

ОФ в настоящее время является основным видом твердых побочных продуктов при производстве алюминия, относится к отходам 3–4 класса опасности⁴ и содержит в среднем масс. %: 30 – углерода, 30 – огнеупоров (муллит, кварц, тридимит и др.), 40 – фторсолей (в основном криолит, хиолит, фториды кальция и натрия и др.) [3, 4]. ОФ

содержит также небольшое количество металлического алюминия, цианиды натрия, калия, железа, нитрид алюминия AIN, карбид алюминия AI_4C_3 , алюминид железа AI_3F_6 , гидроксиды и карбонаты щелочных, щелочноземельных металлов и другие компоненты. Образование $O\Phi$ (независимо от типа анодного устройства электролизных ванн на отечественных заводах по получению первичного алюминия) составляет 25-35 кг на 1 т производимого металла. В настоящее время в России этот вид техногенного сырья складируется на специально оборудованных полигонах.

ОФ принято разделять на две части – углеродсодержащую и огнеупорную (тепло-изоляционная). Углеродсодержащая часть ОФ частично используется в черной металлургии в качестве флюсующей добавки при

⁴Немчинова Н.В., Шумилова Л.В., Салхофер С.П., Размахнин К.К., Чернова О.А. Комплексное устойчивое управление отходами. Металлургическая промышленность: учеб. пособие М.: ИД «Академия Естествознания», 2016. 494 с. / Nemchinova N.V., Shumilova L.V., Salkhofer S.P., Razmakhnin K.K., Chernova O.A. Integrated sustainable waste management. Metallurgical industry: Learning aids. Moscow, Academy of Natural Sciences Publ., 2016, 494 p.

выплавке чугуна и стали; разработаны способы регенерации фтора из углеродсодержащей части ОФ с получением фтористых солей, возвращаемых в процесс электролиза [3, 5–11].

За рубежом огнеупорная ОФ предварительно нейтрализуется, часть используется в производстве строительных материалов [5]. В последнее время разрабатываются технологии по извлечению ценных компонентов из этого техногенного сырья с целью получения соединений фтора и вторичного кремнеземсодержащего продукта, пригодного для использования в производстве цемента [12, 13]. Целью предлагаемых технологий является полная утилизация данного вида техногенного сырья.

Объекты исследований

Для изучения вещественного состава и свойств огнеупорной части ОФ электролизеров для получения алюминия на предприятиях ПАО «РУСАЛ Красноярск» и ПАО «РУСАЛ Братск» филиал в г. Шелехов были отобраны продукты демонтажа катодного устройства электролизеров типа С8БМ (рис. 1) с различным сроком эксплуатации.

Демонтаж проводился на участках выбойки в цехах капитального ремонта электролизеров по «мокрой» технологии [14], заключающейся в том, что после извлечения кускового электролита для ускорения охлаждения катодного устройства и облегчения демонтажных работ в ванну заливают воду, которая вступает в химическое взаимодействие с электролитом, карбидом алюминия, с внедрившимся в угольную футеровку натрием, что приводит к разбуханию и разрушению футеровки.

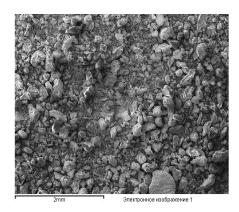
Из литературных данных известно [15], что ОФ содержит от 0,01 до 1 % масс. натрия, который, реагируя с водой, образует шелочь:

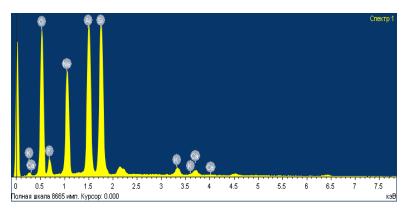
$$2Na + 2H_2O = H_2 + 2NaOH.$$
 (1)

Это подтверждается нашими исследованиями: образцы огнеупорной части ОФ после заливки водой имеют рН от 8 до 11.

После удаления углеродсодержащей части и блюмсов проводили разборку огнеупорной части ОФ, из которой отбирали образцы для исследований. Пробы, за исключением шамотной засыпки, отбирали из разных мест по периметру ванны и от каждого продукта точечным методом по площади и сечению. Затем образцы измельчали с помощью гидравлического пресса МС-1000, дробили на щековой лабораторной дробил-

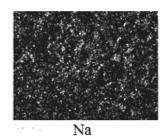
Рис. 1. Огнеупорная часть отработаной футеровки при демонтаже катодного устройства электролизера
Fig. 1. Spent lining refractory part under dismantling of the electrolyzer cathode system

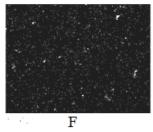


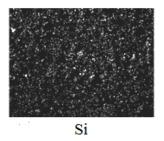

ке ЩД-6 и истирали в дисковом истирателе ИД-65 до фракции -0,2 мм. После этого обычными приемами квартования нескольких проб в определенных соотношениях получали среднюю представительную пробу для исследований.

По результатам исследований химический состав различных образцов огнеупорной части ОФ представлен следующими элементами, % масс.: C - 1-5; F - 8-12; AI - 12-16; Na - 7-10; Ca - 0,5-1,0; Si - 16-20; Mg - 0,5-1,0; Fe - 1,0-2,0; прочие -35-45 (данные рентгенофлюоресцентного анализа (РФА), выполненного на спектрометре S8 TIGER производства фирмы Bruker (Германия)). Прочие представлены кислородом (в основном). В качестве основных фаз в огнеупорной части ОФ, согласно данным рентгеноструктурного анализа, вы-

полненного на дифрактометре Shimadzu XRD-7000S (Япония), зафиксированы следующие основные соединения: муллит $3Al_2O_3$: $2SiO_2$; фторид натрия NaF; криолит Na₃AlF₆; хиолит Na₅Al₃F₁₄; оксид кремния SiO_2 (в виде кристобалита, кварца, тридимита); фторид кальция CaF_2 ; оксид алюминия Al_2O_3 ; нефелин NaAlSiO₄; альбит NaAlSi₃O₈ [9].


На рис. 2, 3 приведены результаты сканирующей электронной микроскопии (СЭМ) изучаемого образца; анализ проводился на сканирующем электронном микроскопе Jeol JIB-Z4500 (Япония) с помощью энергодисперсионного детектора X-max 80 мм² фирмы OXFORD INSTRUMENTS, снабженного дополнительной установкой анализатора EDS (энергодисперсионный рентгеновский спектрометр).





b

Puc. 2. Результаты СЭМ образца огнеупорной части отработанной футеровки с электролизера ПАО «РУСАЛ Братск» филиал в г. Шелехов: а — электронное изображение измельченной пробы (увеличение ×200); b — спектры зафиксированных в пробе основных элементов Fig. 2. Results of scanning electron microscopy (SEM) of spent lining refractory part sample from the electrolyzer of OJSC RUSAL Bratsk branch in the town of Shelekhov: a — electronic image of a crushed sample (two hundredfold increase); b — spectra of the main elements determined in the sample

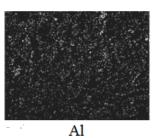


Рис. 3. Электронные изображения распределения элементов по поверхности образца ОФ (светлые области соответствуют указанным химическим элементам)

Fig. 3. Electronic images of element distribution over the spent lining sample surface (bright areas correspond to the specifed chemical elements)

При наложении изображений распределения элементов можно сделать вывод, что весь фтор, содержащийся в исследуемом образце, связан с натрием (NaF, Na₃AlF₆, Na₅Al₃F₁₄); оставшаяся часть

натрия связана с кремнием и алюминием (NaAlSiO₄, NaAlSi₃O₈). По результатам проведенных исследований установлено, что до 70% масс. фтора присутствует в виде фтористого натрия [9].

Методика проведения эксперимента по водному выщелачиванию

Нами были проведены лабораторные исследования по переводу в раствор фторида натрия, растворимость которого в воде достаточно хорошая и составляет 42,2 г/дм³ (при 20°C) и 42,8 г/дм³ (при 100°C). Было изучено влияние параметров процесса: температуры в интервале от 25 до 80°С (293-353 К) и продолжительности от 15 до 480 мин. Для исследований использовали усредненную пробу огнеупорной части ОФ следующего состава (по данным РФА). % масс.: C - 0.60; F - 8.59; Al - 12.62; Na -7.36; Ca - 0.54; Si - 24.52; Mg - 0.51; Fe -0.97; прочие – 44.29. Прочие, в основном, представлены кислородом в виде Al₂O₃, SiO₂. Данная пробы была подготовлена подшихтовкой отдельных составляющих до приведения ее химического состава к значениям, наиболее отвечающим большинству проб электролизеров.

Измельченную до крупности частиц -0,2 мм ОФ пробу смешивали с дистиллированной водой, нагретой до определенной температуры во фторопластовом стакане, помещенном в жидкостной термостат. Перемешивание проводилось с использованием верхнеприводной лабораторной шалки BIOSANMM-1000 с двулопастной насадкой. Частота вращения устанавливалась на уровне 800 мин-1 (окружная скорость 0,2 м/с), то есть перемешивание было достаточно интенсивным и распределение твердых частиц в объеме стакана оказывалось наиболее равномерным. По истечении заданного времени пульпу фильтровали на воронке Бюхнера с двойным фильтром «синяя лента». Раствор выщелачивания анализировали на рН и концентрацию фторида натрия. Для измерения рН и концентрации водорастворимых форм фторидов использовали анализатор жидкости ЭКСПЕРТ-001 с комбинированным рН-электродом ЭСК-10601/7 К80.7 и ионселективным электродом ЭЛИТ-221 компании «НИКА». Степень извлечения фтора определяли по его содержанию в исходной пробе, осадке и растворе после выщелачивания. Для этого пробы исследовали с помощью РФА, СЭМ и рентгеноструктурного методов анализа.

Результаты эксперимента представлены на рис. 4.

Извлечение фтора составило 62,95% при продолжительности 120 мин. и температуре 60°С. Проведенные исследования позволили рекомендовать принципиальную технологическую схему перевода в раствор водорастворимых фторсодержащих соединений из огнеупорной части ОФ при ее обработке водой [12].

Однако значительная часть кремнезема, содержащегося в ОФ, также переходит в раствор водного выщелачивания, что может привести к загрязнению получаемого криолита при переработке растворов выщелачивания с целью его получения для использования в процессе электролиза. В связи с этим нами были проведены термодинамические расчеты реакций взаимодействия компонентов ОФ с растворами газоочистки и шламовыми водами предприятия.

Термодинамический анализ взаимодействия компонентов отработанной футеровки электролизеров с растворами гидроксида, карбоната и гидрокарбоната натрия

Как было указано выше, основными фторсодержащими соединениями в ОФ (помимо фторида натрия) являются криолит,

хиолит и фторид кальция. Для оценки возможности извлечения фтора в раствор с последующей разработкой технологии реге-

нерации фтористых солей из растворов необходимо провести термодинамический анализ взаимодействия данных компонентов с водными растворами гидроксида, карбоната и гидрокарбоната натрия. Выбор данных реагентов связан с тем, что легкорастворимый фторид натрия в кислой среде разлагается с образованием плавиковой кислоты, которая хорошо растворяет кремнезем, переходящий в продукционные фторсоли и являющийся вредной примесью.

Термодинамические расчеты проводили по стандартной методике. Изменение сводной энергии Гиббса (ΔG_T) рассчитывали по уравнению первого приближения Улиха [16]. При расчетах применялась разработанная авторами в редакторе Microsoft Excel компьютерная программа с использованием справочных данных из нескольких источников⁵ [17, 18]. Расчеты вели при стандартной температуре 298 К. Общепринято обозначать ΔH — тепловой эффект процесса; ΔH >0 — процесс эндотермический, при ΔH <0 — экзотермический. ΔS — изменение энтропии процесса, ΔG — отвечает за самопроизвольность протекания процесса;

при ΔG <0 – процесс возможен, при ΔG >0 – процесс невозможен.

В справочной литературе⁵ приводятся термодинамические данные для растворов NaOH с различным молярным количеством воды, которые применялись при проведении расчетов. Также при проведении расчетов взаимодействия фторсодержащих материалов с водными растворами гидроксида, карбоната и гидрокарбоната натрия учитывались явления гидролиза компонентов растворов.

Для раствора карбоната натрия:

$$Na_2CO_3+H_2O=2Na^++HCO_3^-+OH^-,$$
 (2)

$$HCO_3^- + OH^- = CO_3^{2-} + H_2O.$$
 (3)

Для раствора гидрокарбоната натрия:

$$NaHCO_3+H_2O=Na^+ + H_2CO_3 + OH^-$$
, (4)

$$H_2CO_3 + OH^- = HCO_3^- + H_2O$$
. (5)

Для раствора алюмината натрия:

$$NaAIO_2 + H_2O = Na^+ + AI(OH)_4^-,$$
 (6)

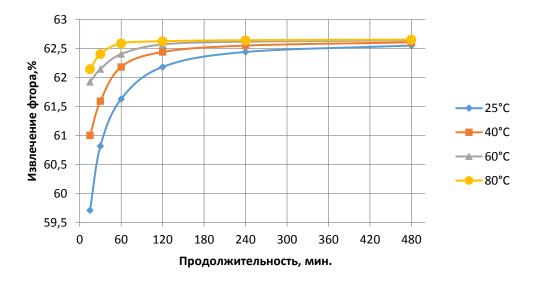


Рис. 4. Зависимость извлечения фтора в раствор при выщелачивании от продолжительности при различных температурах

Fig. 4. Dependence of fluorine recovery in solution on leaching duration at various temperatures

⁵Глушко В.П., Медведев В.А. Термические константы веществ: справочник. Т. 10. М.: АН СССР, ВИНИТИ, 1981. 297 с. / Glushko V.P., Medvedev V.A. Thermal constants of substances: a reference book. Vol. 10. Moscow: AN SSSR, VINITI, 1981. 297 р.

$$AI(OH)^{4-} = AIO_2^{-} + H_2O.$$
 (7)

Данные термодинамических расчетов взаимодействия криолита и хиолита с водными растворами гидроксида, карбоната и гидрокарбоната натрия представлены в табл. 1.

Из приведенных выше расчетов следует, что процессы взаимодействия криолита и хиолита с растворами гидроксида натрия возможны (реакции № 1, 2 табл. 1).

На основании термодинамических расчетов можно заключить, что реакции вза-имодействия криолита и хиолита с карбонатом и гидрокарбонатом натрия невозможны (см. реакции № 3–6, табл. 1). Однако можно предположить, что в данном случае необходимо учитывать явление гидролиза этих солей.

Любой гидролиз характеризуется константой гидролиза — $k_{\text{гидр}}$, зависящей от константы диссоциации (K) слабой кислоты, из которой образована соль. К угольной кислоты первой ступени равна $4,45 \cdot 10^{-7}$, а второй ступени — $4,68 \cdot 10^{-11} \cdot 6$.

1. Гидролиз карбоната натрия

можно выразить следующим образом:

$$Na_2CO_3 + H_2O = NaHCO_3 + NaOH,$$
 (8)

$$Na_2CO_3 = 2Na^+ + CO_3^{2-},$$
 (9)

$$2Na^+ + CO_3^{2^-} + H_2O = 2Na^+ + HCO_3^- + OH^-.(10)$$

Тогда:

$$\mathsf{K} = \frac{[\mathsf{HCO}_3^-][\mathsf{OH}^-]}{[\mathsf{CO}_3^{2-}][\mathsf{H}_2\mathsf{O}]},$$

$$K \bullet [H_2O] = k_{\Gamma U \perp D}$$
,

$$k_{\text{гидр}} = \frac{[\text{HCO}_3^-][\text{OH}^-]}{[\text{CO}_2^{2-}]}$$
.

Константа гидролиза первой ступени угольной кислоты $k_{\text{гидр}} = 2,14 \cdot 10^{-4}$. Со степенью гидролиза α она связана следующим образом:

$$\mathbf{k}_{\text{гидр}} = \frac{\alpha^2}{1-\alpha}$$
.

Тогда степень гидролиза карбоната натрия в одномолярном растворе составит $\alpha = 1.46 \cdot 10^{-2}$.

Таблица 1 Термодинамические данные взаимодействия криолита и хиолита с различными реагентами Тable 1

Thermodynamic data of cryolite and chiolite interaction with various reagents

	Thombody harmo data of oryonto and official interaction with various rougents						
Nº	Реакция	$\Delta~H^0_{298},$ кДж/моль	∆ S^0_{298} , Дж/ моль·К	$\Delta~G^0_{298},$ кДж/ моль			
1	$Na_3AIF_6+4NaOH_{(p-p; 1000H2O)} = 7Na^++6F^-+ AI(OH)_4$	11.56	183.77	- 43.207			
2	$Na_5A_{l3}F_{14}+12NaOH_{(p-p; 1000H2O)} = 17Na^++14F^-$ +3AI(OH) ₄ -	-24.90	603.98	-204.888			
3	Na ₃ AlF ₆ +4Na ⁺ +2CO ₃ ²⁻ =7Na ⁺ +6F-+ AlO ₂ ⁻ +2CO ₂	230.66	347.71	127.038			
4	Na ₅ A ₁₃ F ₁₄ +12Na ⁺ +6CO ₃ ²⁻ =17Na ⁺ +14F ⁻ +3AlO ₂ ⁻ +6CO ₂	632.40	1095.80	305.850			
5	Na ₃ AlF ₆ +4Na ⁺ +4HCO ₃ ⁻ =7Na ⁺ +6F ⁻ + AlO ₂ ⁻ +4CO ₂ +2H ₂ O	283.80	433.19	154.707			
6	Na ₅ A _{I3} F ₁₄ +12Na ⁺ +12HCO ₃ ⁻ =17Na ⁺ +14F ⁻ +3AlO ₂ ⁻ +12CO ₂ +6H ₂ O	791.82	1352.23	388.854			

Возвращаясь к реакциям № 3, 4 табл. 1 можно предположить, что Na₂CO₃, гидролизуясь, дает количество NaOH, равное произведению исходной концентрации Na₂CO₃ на 1,46•10⁻². Так как взаимодействие криолита и хиолита с NaOH (реакции № 1, 2 табл. 1) возможно, то и взаимодействие этих фтористых солей с Na₂CO₃ (реакции № 3, 4 табл. 1) также возможно, но количество продуктов реакции будет определяться степенью гидролиза.

2. Гидролиз гидрокарбоната натрия можно выразить следующим образом:

$$NaHCO_3 = Na^+ + HCO_3^-,$$
 (11)

$$HCO_3^- + H_2O = H_2CO_3 + OH^-,$$
 (12)

$$H_2CO_3 = H_2O + CO_2.$$
 (13)

Константа гидролиза угольной кислоты второй ступени равна $k_{\text{гидр}} = 2,25 \cdot 10^{-8}$, следовательно, степень гидролиза бикарбоната натрия в одномолярном растворе составит $\alpha = 1,5 \cdot 10^{-4}$. То есть взаимодействие криолита и хиолита с гидрокарбонатом натрия возможно по реакциям № 5, 6 (см. табл. 1), но количество продуктов реакции также будет определяться степенью гидролиза.

Так как взаимодействие NaOH с криолитом и хиолитом возможно, то допустимы реакции последних с карбонатом и гидрокарбонатом натрия с учетом гидролиза данных растворов. При гидролизе карбоната натрия будет образовываться количество щелочи:

158

 $C_{\text{NaOH}} = C_{\text{Na2CO3}} \cdot 1,46 \cdot 10^{-2}.$

В случае гидролиза гидрокарбоната натрия концентрация щелочи составит:

То есть выход продуктов реакции будет очень мал.

Результаты термодинамических расчетов взаимодействия фторида кальция с растворами гидроксида, карбоната и гидрокарбоната натрия представлены в табл. 2.

Из приведенных в табл. 2 термодинамических расчетов следует, что процесс взаимодействия фторида кальция с растворами гидроксида, карбоната и гидрокарбоната натрия невозможен. Анализируя значения Δ G^0_{298} в реакции № 1 табл. 2, можно сделать вывод, что при повышении температуры данная реакция возможна, так как Δ G^0_{298} близка к нулю.

Так как фторид натрия является солью слабой кислоты и сильного основания, то в водных растворах он подвергается гидролизу по аниону:

$$NaF + H_2O = Na^+ + OH^- + HF.$$
 (14)

Степень гидролиза фторида натрия невелика и составляет в одномолярном растворе $\alpha = 3,9 \cdot 10^{-6}$. При добавлении в раствор NaF гидроксида натрия реакция (14) смещается влево, чем и объясняется снижение растворимости фторида натрия в присутствии гидроксида натрия. Химически

Таблица 2

Термодинамические данные и результаты расчета взаимодействия фторида кальция с различными реагентами

Table 2

Thermodynamic data and results of calculating calcium fluoride interaction with various reagents

Nº	Реакция	$\Delta \ H^0_{298}, \ $ кДж/моль	$\Delta \ S^0_{298}, \ extstyle extst$	$\Delta~G^{0}_{298}$, кДж/ моль
1	$CaF_2 + 2NaOH_{(p-p; 1000H2O)} = Ca(OH)_2 + 2Na^+ + 2F^-$	32.17	104.68	0.979
2	$CaF_2+2Na^++CO_3^{2-}=CaCO_3+2Na^++2F^-$	27.74	51.16	12.498
3	CaF ₂ +2Na ⁺ +2HCO ₃ ⁻ =CaCO ₃ +2Na ⁺ +2F ⁻ +CO ₂ + H ₂ O	54.31	93.90	26.332

фторид натрия не взаимодействует с растворами гидроксида, карбоната и гидрокарбоната натрия.

Как было отмечено выше, кремнезем является нежелательной примесью в криолите. Для изучения поведения кремнезема был проведен термодинамический анализ его взаимодействия с растворами гидроксида, карбоната и гидрокарбоната натрия, результаты которого представлены в табл. 3.

Диоксид кремния взаимодействует с раствором гидроксида натрия с образованием натриевого силиката (реакция № 1 табл. 3). С раствором карбоната и гидрокарбоната натрия реакция кремнезема возможна с учетом гидролиза этих солей, как было описано выше.

Для снижения перехода SiO₂ в раствор обработку измельченного материала производят раствором бикарбоната натрия

либо растворами газоочистки, или шламовыми водами при величине pH не более 10 и продолжительности выщелачивания не менее 6 ч. При этом перешедший в раствор кремнезем взаимодействует с алюминатом натрия, образуя натриевый гидроалюмосиликат Na₂O•Al₂O₃•1,67SiO₂•nH₂O, выпадающий в осадок, но данный процесс обескремнивания раствора происходит медленно, что и требует увеличения продолжительности.

Проведенные термодинамические расчеты и предварительные эксперименты позволили рекомендовать принципиальную технологическую схему получения регенерационного криолита при использовании растворов газоочистки или шламовых вод (для обеспечения замкнутого водооборота) на существующем оборудовании участков производства фтористых солей и пылеулавливания предприятий, производящих первичный алюминий (рис. 5).

Таблица 3 Термодинамические данные и результаты расчета взаимодействия диоксида кремния с различными реагентами Table 3

Thermodynamic data and results of calculating silicon dioxide interaction with various reagents

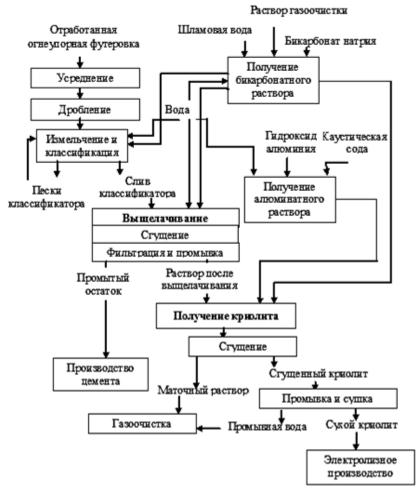
Nº	Реакция	∆ $H^0_{298},$ кДж/моль	∆ S^0_{298} , Дж/ моль·К	$\Delta~G^{0}_{298}$, кДж/ моль
1	$SiO_2 + NaOH_{(p-p; 1000H2O)} = Na_2SiO_3 + H_2O$	-466.46	142.38	-508.892
2	$SiO_2+2Na^++CO_3^2 = Na_2SiO_3 + CO_2$	113.21	224.27	46.382
3	$SiO_2+2Na^++2HCO_3^- = Na_2SiO_3 +2CO_2 + H_2O$	139.78	267.01	60.216

Заключение

При изучении химического состава образцов огнеупорной части отработанной футеровки электролизеров, отключенных на капитальный ремонт, установлено, что основными фторсодержащими соединениями являются криолит, хиолит, фторид кальция и фторид натрия, причем до 70% масс. фтора присутствует в виде NaF.

Экспериментальным методом определено, что оптимальными условиями для

водного выщелачивания водорастворимых соединений фтора (фторида натрия) из огнеупорной части ОФ являются: температура выщелачивания 60°С и время выщелачивания 120 мин. Извлечение фтора в раствор при этом составило 62,95%.


Термодинамические расчеты возможности взаимодействия компонентов ОФ с растворами гидроксида, карбоната и гид-

⁶Новый справочник химика и технолога. Химическое равновесие. Свойства растворов / под. ред. С.А. Симановой. СПб.: Профессионал, 2004. 998 с. / A new handbook for chemist and technologist. Chemical equilibrium. Properties of solutions. Under edition of S.A. Simanova. St. Petersburg, Professional Publ., 2004, 998 p.

рокарбоната натрия и проведенные лабораторные испытания позволили рекомендовать принципиальную технологическую

схему получения регенерационного криолита на предприятиях, производящих первичный алюминий.

Puc. 5. Технологическая схема получения регенерационного криолита Fig. 5. Flow diagram of regenerative cryolite production

Работа выполнена по НИР «Разработка и испытания эффективного пиролитического способа переработки отработанной футеровки алюминиевых электролизеров», Соглашение с Министерством образования РФ о предоставлении субсидии № 14.577.21.0190. Уникальный идентификатор ПНИЭР RFMEFI57715X0190.

Библиографический список

- 1. Grjotheim K., Kvande H. Introduction to Aluminium Electrolysis. Dusseldorf Aluminium Verlag, 1993. 260 p.
- 2. Sørlie M., Øye H. Cathodes in Aluminium Electrolysis (3 rd edition). Dusseldorf: Aluminium-Verlag, 2010. 662 p.
- 3. Куликов Б.П., Истомин С.П. Переработка отходов алюминиевого производства. Красноярск: Классик Центр, 2004. 480 с.
- 4. Somov V.V., Nemchinova N.V., Korepina N.A. Analytical methods of researching the aluminium electrolysis cell fulfilled lining samples / J. Sib. Fed. Univ. Eng. technol. 2017. No. 10(5). P. 607–620. DOI: 10.17516/1999-

- 494X-2017-10-5-607-620.
- 5. Holywell G., Breault R. An Overview of Useful Methods to Treat, Recover or Recycle Spent Potlining // JOM. 2013. Vol. 65. No. 11. P. 1441–1451.
- 6. Немчинова Н.В., Тютрин А.А., Сомов В.В., Бараускас А.Э., Яковлева А.А. Извлечение фтора из угольной части отработанной футеровки электролизеров производства алюминия // Металлургия: технологии, инновации, качество «Металлургия 2017»: материалы XX Междунар. науч.-практ. конф. (г. Новокузнецк, 15–16 ноября 2017 г.). Новокузнецк, 2017. Ч. 1. С. 441–446.

Металлургия и материаловедение Metallurgy and Materials Science

- 7. Пат. № 2616753, Российская Федерация, С22В07/00, С22В07/04, С22В03/04. Способ переработки фторуглеродсодержащих отходов электролитического производства алюминия / Ю.В. Богданов, С.Ю. Павлов, В.В. Сомов, А.Г. Сусс, А.А. Дамаскин, В.В. Пингин, А.С. Жердев. № 2015148964, опубл. 18.04.2017. Бюл. № 11.
- 8. Баранов А.Н., Тимкина Е.В., Тютрин А.А. Исследования по выщелачиванию фтора из углеродсодержащих материалов производства алюминия // Вестник Иркутского государственного технического университета. 2017. Т. 21. № 7. С. 143–151. https://doi.org/10.21285/1814-3520-2017-7-143-151.
- 9. Meirelles B., Santos H. Economic and environmental alternative for destination of spent pot lining from primary aluminium production // Light Metals. 2014. P. 565–570. 10. Mann V., Pingin V., Zherdev A., Bogdanov Y., Pavlov S., Somov V. SPL Recycling and Re-processing // Light Metals. 2017. P. 571–578.
- 11. Nemchinova N.V., Yakushevich P.A., Yakovleva A.A., Gavrilenko L.V. Experiment for use of Bratsk aluminium plant technogenic waste as a reducing agent during cast iron smelting // Metallurgist. Vol. 62. Issue. 1–2. 2018. P. 150–155. DOI 10.1007/s11015-018-0637-7.
- 12. Ржечицкий Э.П., Петровский А.А., Немчинова Н.В., Иванов А.А. Разработка технологии перера-

- ботки теплоизоляционной части отработанной футеровки алюминиевых электролизеров // Вестник Иркутского государственного технического университета. 2017. № 9. С. 201–209. https://doi.org/10.21285/1814-3520-2017-9-201-209
- 13. Kondratiev V.V., Petrovskiy A.A., Ershov V.A., Sysoeva T.I., Karlina A.I. Results of Researches with Revealing of Technological Parameters of Processes of Recycling and Neutralization of the First and Second Cut of the Spent Lining of Electrolyzers for Reception of Aluminum Fluoride by Pyrolytic and Hydro Chemical Method // International Journal of Applied Engineering Research. 2017. Vol. 12. No. 23. P. 13898–13904.
- 14. Кузнецов С.И., Эпштейн А.М. Электролитическое производство алюминия. М.: Металлургиздат, 1953. 304 с.
- 15. Augood D.R. Some Handling Considerations for Spent Potlining // Light Metals. 1986. P. 979–992.
- 16. Киреев В.А. Методы практических расчетов в термодинамике химических реакций. М.: Химия, 1975. 535 с
- 17. Search for Species Data by Chemical Formula [Электронный ресурс]. URL: https://webbook.nist.gov (21.05.2018).
- 18. Химик [Электронный ресурс]. URL: http://www.xu-muk.ru (21.05.2018).

Reference

- Grjotheim K., Kvande H. Introduction to Aluminium Electrolysis. Dusseldorf Aluminium Verlag, 1993, 260 p.
 Sørlie M., Øye H. Cathodes in Aluminium Electrolysis (3 rd edition). Dusseldorf: Aluminium-Verlag, 2010, 662
- 3. Kulikov B.P., Istomin S.P. *Pererabotka othodov al-yuminievogo proizvodstva* [Processing of aluminum waste products]. Krasnoyarsk: Klassik Centr Publ., 2004, 480 p. (in Russian).
- 4. Somov V.V., Nemchinova N.V., Korepina N.A. Analytical methods of researching the aluminium electrolysis cell fulfilled lining samples. J. Sib. Fed. Univ. Eng. Technol, 2017, no. 10(5), pp. 607–620. DOI: 10.17516/1999-494X-2017-10-5-607-620. (in Russian).
- 5. Holywell G., Breault R. An Overview of Useful Methods to Treat, Recover, or Recycle Spent Potlining. JOM. 2013, vol. 65, no. 11, pp. 1441–1451.
- 6. Nemchinova N.V., Tyutrin A.A., Somov V.V., Barauskas A.E., Yakovleva A.A. *Izvlechenie ftora iz ugol'noj chasti otrabotannoj futerovki elektrolizerov pro-izvodstva alyuminiya* [Fluorine recovery from the coal part of the spent lining of aluminum production electrolyzers]. *Materialy XX Mezhdunarodnoy naucho-prakticheskoi konferentsii* [Proceedings of XX International Scientific and Practical Conference: Metallurgy: Technologies, Innovations, Quality "Metallurgy 2017", Novokuznetsk, 15–16 November 2017]. Novokuznetsk, 2017, part 1, pp. 441–446. (in Russian).
- 7. Bogdanov Yu.V., Pavlov S.Yu., Somov V.V., Sousse A.G., Damaskin A.A., Pingin V.V., Zherdev A.S. Sposob

- pererabotki ftoruglerodsoderzhashchih othodov ehlektroliticheskogo proizvodstva alyuminiya [Method for processing fluorocarbon-containing waste of electrolytic aluminum production]. Patent RF, no. 11, 2017.
- 8. Baranov A.N., Timkina E.V., Tyutrin A.A. Research on leading fluorine from carbon-containing materials of aluminum production. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* [Proceedings of Irkutsk State Technical University], 2017, vol. 21, no. 7, pp. 143–151. DOI: 10.21285/1814-3520-2017-7-143-151(in Russian).
- 9. Meirelles B., Santos H. Economic and environmental alternative for destination of spent pot lining from primary aluminium production. Light Metals, 2014, pp. 565–570. 10. Mann V., Pingin V., Zherdev A., Bogdanov Y., Pavlov S., Somov V. SPL Recycling and Re-processing. Light Metals, 2017, pp. 571–578.
- 11. Nemchinova N.V., Yakushevich P.A., Yakovleva A.A., Gavrilenko L.V. Experiment for use of Bratsk aluminium plant technogenic waste as a reducing agent during cast iron smelting // Metallurgist, vol. 62, issue 1–2, 2018, pp. 150–155. DOI 10.1007/s11015-018-0637-7.
- 12. Rzhechitsky E.P., Petrovsky A.A., Nemchinova N.V., Ivanov A.A. Development of technology for aluminum electrolyzer spent lining insulation parts processing. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* [Proceedings of Irkutsk State Technical University], 2017, no 9, pp. 201–209. DOI: 10.21285/1814-3520-2017-9-201-209.
- 13. Kondratiev V.V., Petrovskiy A.A., Ershov V.A.,

Металлургия и материаловедениеMetallurgy and Materials Science

Sysoeva T.I., Karlina A.I. Results of researches with revealing of technological parameters of processes of recycling and neutralization of the first and second cut of the spent lining of electrolyzers for reception of aluminum fluoride by pyrolytic and hydro chemical method. International Journal of Applied Engineering Research, 2017, vol. 12, no 23. pp. 13898–13904.

14. Kuznetsov S.I., Epstein A.M. *Ehlektroliticheskoe pro-izvodstvo alyuminiya* [Electrolytic aluminum production]. Moscow: Metallurgizdat Publ., 1953, 304 p. (in Russian). 15. Augood D.R. Some Handling Considerations for

Критерии авторства

Петровский А.А., Немчинова Н.В., Ржечицкий Э.П. имеют равные авторские права и несут одинаковую ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Spent Potlining. Light Metals, 1986, pp. 979–992.

- 16. Kireev V.A. *Metody prakticheskih raschetov v termodinamike himicheskih reakcij* [Methods of practical calculations in chemical reaction thermodynamics]. Moscow: Chemistry Publ., 1975, 535 p.
- 17. Search for Species Data by Chemical Formula. Available at: https://webbook.nist.gov (accessed 21 May 2018).
- 18. Himik [Chemist]. Available at: http://www.xumuk.ru (accessed 21 May 2018).

Authorship criteria

Petrovsky A.A., Nemchinova N.V., Rzhechitsky E.P. have equal author's rights and bear equal responsibility for plagiarism.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Металлургия и материаловедениеMetallurgy and Materials Science

Оригинальная статья / Original article УДК 669.213.3:66.046.8

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-163-172

ПЕРЕРАБОТКА УПОРНОГО ЗОЛОТОСОДЕРЖАЩЕГО МЫШЬЯКОВИСТОГО ФЛОТОКОНЦЕНТРАТА МЕСТОРОЖДЕНИЯ «ИККИЖЕЛОН» С ИСПОЛЬЗОВАНИЕМ АВТОКЛАВНОГО ОКИСЛЕНИЯ

© О.Б. Рахманов¹, А.В. Аксёнов², Г.Г. Минеев³, Х.М. Назаров⁴, М.И. Каримов⁵

1,2,3Иркутский национальный исследовательский технический университет, 664074, Российская Федерация, г. Иркутск, ул. Лермонтова, 83. 4,5Таджикский горно-металлургический институт, 735030, Республика Таджикистан, г. Бустон, ул. Московская, 6.

РЕЗЮМЕ. ЦЕЛЬ. В настоящее время поиск и разработка эффективной и экологической безопасной технологии переработки упорных золото-мышьяковистых флотоконцентратов является актуальной технологической задачей в области металлургии золота. Целью исследований явилось проведение экспериментов по автоклавному окислению золото-мышьяковистого флотоконцентрата месторождения «Иккижелон» (Республика Таджикистан) и извлечению драгоценных металлов из продуктов автоклавного окисления цианированием, а также изучение вещественного состава продуктов автоклавного окисления. МЕТОДЫ. При исследовании вещественного состава продуктов автоклавного окисления применялись оптико-эмиссионный, атомно-абсорбционный, рентгенофазовый, гравиметрический, титриметрический, фотометрический, дифрактометрический, количественный минералогический, микроскопический методы анализа, а также метод ИК – спектроскопии. Содержание золота и серебра в пробе и в продуктах переработки определяли методом прямого пробирного анализа. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. В результате цианирования исходного продукта извлечение золота и серебра составило 55,1 и 75,8% соответственно. Помимо низкого извлечения золота, переработка исходного концентрата характеризуется относительно высоким расходом растворителя (NaCN) и сложностью обезвреживания образующихся хвостов от мышьяковистых соединений. В результате проведенных авторами исследований по технологии «автоклавное окисление – цианирование» извлечение золота выросло на 42,03% по сравнению с цианированием исходного концентрата. ЗАКЛЮ-**ЧЕНИЕ.** Извлечение золота из упорного золото-мышьяковистого флотоконцентрата месторождения «Иккижелон» с использованием автоклавного окисления позволило получить высокое извлечение золота при последующем цианировании. На основе результатов данных исследований авторами запланировано проведение экспериментов по автоклавному окислению в присутствии галогенсодержащих реагентов в процессе окисления с целью снижения образования аргентоярозитов и повышения степени извлечения серебра при цианировании.

Ключевые слова: золотосодержащая руда, мышьяковистый флотоконцентрат, сорбционное цианирование, автоклавное окисление, минеральный состав, извлечение золота.

Информация о статье. Дата поступления 26 июня 2018 г.; дата принятия к печати 12 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

¹Рахманов Одилжон Бозорович, аспирант, e-mail: rakhmanov.salam@mail.ru

Odilzhon B. Rakhmanov, Postgraduate, e-mail: rakhmanov.salam@mail.ru

²Аксёнов Александр Владимирович, кандидат технических наук, доцент кафедры металлургии цветных металлов,e-mail: aksenov@tomsgroup.ru

Aleksandr V. Aksenov, Candidate of technical sciences, Associate Professor of the Department of Non-Ferrous Metals Metallurgy, e-mail: aksenov@tomsgroup.ru

³Минеев Геннадий Григорьевич, доктор технических наук, профессор кафедры металлургии цветных металлов. Gennady G. Mineev, Doctor of technical sciences, Professor of the Department of Non-Ferrous Metals Metallurgy.

⁴Назаров Холмурод Марипович, доктор технических наук, профессор кафедры металлургии, e-mail: holmurod18@mail.ru

Kholmurod M. Nazarov, Doctor of technical sciences, Professor of the Department of Metallurgy, e-mail: holmurod18@mail.ru

⁵Каримов Мурад Ильясович, кандидат технических наук, доцент кафедры металлургии, e-mail: chorchaman@rambler.ru

Murad I. Karimov, Candidate of technical sciences, Associate Professor of the Department of Metallurgy, e-mail: chorchaman@rambler.ru

Металлургия и материаловедение Metallurgy and Materials Science

Формат цитирования: Рахманов О.Б., Аксенов А.В., Минеев Г.Г., Назаров Х.М., Каримов М.И. Переработка упорного золотосодержащего мышьяковистого флотоконцентрата месторождения «Иккижелон» с использованием автоклавного окисления // Вестник Иркутского государственного технического университета. 2018.Т. 22. № 8. С. 163–172. DOI:10.21285/1814-3520-2018-8-163-172

PROCESSING OF REFRACTORY GOLD-ARSENIC FLOTATION CONCENTRATE OF IKKIJELON DEPOSIT BY PRESSURE OXIDATION

O.B. Rakhmanov, A.V. Aksenov, G.G. Mineev, Kh.M. Nazarov, M.I. Karimov

Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk, 664074, Russian Federation. Mining and Metallurgical Institute of Tajikistan, 6, Moskovskaya St., Buston, 735030, Republic of Tajikistan.

ABSTRACT. PURPOSE. Today the search for and development of an effective and environmentally-friendly processing technology of refractory gold-arsenic flotation concentrate is a relevant technological task in the field of gold metallurgy. The purpose of the study is conducting of experiments on pressure oxidation of gold-arsenic flotation concentrate of Ikkijelon deposit (Republic of Tajikistan), recovery of precious metals from pressure oxidation products by cyanidation as well as the study of the material composition of pressure oxidation products. METHODS. The material composition of pressure oxidation products has been studied using optical emission, atomic absorption, X-ray diffraction, gravimetric, titrimetric, photometric, IR-spectroscopic, diffractometric, quantitative mineralogical methods, and a microscopic analysis. The content of gold and silver in the sample and in the derived products has been determined by the method of direct assay analysis. RESULTS AND THEIR DISCUSSION. The cyanidation of the initial product provides 55.1% and 75.8% recovery of gold and silver respectively. In addition to low gold recovery the processing of initial concentrate is characterized by a relatively high consumption of dissolver (sodium cyanide) and the complexity of formed tailing neutralization from arsenic compounds. The studies conducted by the authors according to the technology "pressure oxidation - cyanidation" have shown the 42.03% growth in gold recovery as compared to the cyanidation of the initial concentrate. CONCLUSION. Gold recovery from the refractory gold-arsenic flotation concentrate of Ikkijelon deposit by pressure oxidation allows to obtain high recovery of gold in the post-cyanidation. Based on the obtained results the authors plan to conduct the experiments on pressure oxidation in the presence of halogen-containing reagents in the oxidation process in order to reduce the formation of argentoarosites and to increase the degree of silver recovery under cyanidation.

Keywords: gold-bearing ore, arsenic flotation concentrate, sorption cyanidation, pressure oxidation, mineral composition, gold recovery

Information about the article. Received June 26, 2018; accepted for publication July 12, 2018; available online August 31, 2018.

For citation. Rakhmanov O.B., Aksenov A.V., Mineev G.G., Nazarov Kh.M., Karimov M.I. Processing of refractory gold-arsenic flotation concentrate of Ikkijelon deposit by pressure oxidation. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 163–172. DOI: 10.21285/1814-3520-2018-8-163-172. (In Russian).

Введение

В Таджикистане, как и во всем мире, неуклонно уменьшается доля золота, извлекаемого из простых в технологическом отношении золотосодержащих руд. В связи с этим в переработку все больше вовлекаются упорные (труднообогатимые) руды. Среди упорных золотосодержащих руд особое место занимают руды, содержащие тонко вкрапленное золото, в которых частицы Аи находятся в тесной ассоциации с сульфидными минералами, чаще всего с ар-

сенопиритом и пиритом. Указанные сульфиды, как правило, характеризуются повышенной золотоносностью (десятки и сотни граммов Au на 1 т сульфида) [1, 2]. При этом значительная часть золота в них находится в чрезвычайно тонкодисперсном состоянии в так называемой сульфидной «рубашке» (т.е. закрыто внутри плотных зерен сульфида). По оценке экспертов доля таких руд составляет более 40 % мировых запасов золота в недрах.

Извлечение золота из руды месторождения «Иккижелон» на севере Республики Таджикистан также связано с переработкой упорных руд. Упорность руды месторождения «Иккижелон» связана с содержанием золота в изоморфной или тонкодисперсной формах в рудообразующих минералах (пирите и арсенопирите) и наличием значительного количества мышьяка (1,36%). Руда месторождения «Иккижелон», добытая подземным способом, в течение многих лет перерабатывается на базе ООО СП «Апрелевка» путем предварительного шихтования с рудами других близлежащих месторождений с целью снижения их степени упорности. В настоящее время переработка руды на фабрике осуществляется по технологии сорбционного цианирования с применением в качестве сорбента активированного угля [3, 4].

Извлечение золота из руды данного типа с использованием обычных приемов гидрометаллургии часто встречает значительные трудности, так как не всегда возможно вскрытие его даже при тонком измельчении; кроме того, при тонком измельчении происходит активирование поверхности сульфидов, в результате чего повышается их реакционная способность по отношению к цианистым растворам. А также серьезной проблемой при переработке таких руд является необходимость перевода содержащегося в них мышьяка в относительно безвредные и пригодные для складирования или захоронения формы.

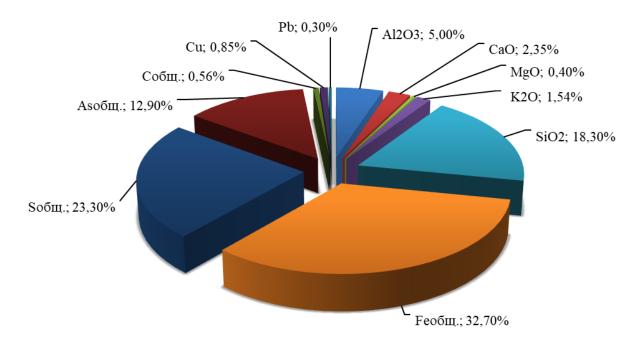
В настоящее время разработаны и широко применяются в промышленности способы переработки пирит- и арсенопиритсодержащих материалов при сочетании цианистой схемы с предварительной сложной механической обработкой (ультратонкое измельчение), химическим выщелачиванием (выщелачивание при повышенных температурах и давлении – автоклавные процессы), биохимическим, термохимическим (обжиг) вскрытием тонкодисперсного металла. Применение данных технологий является капиталоемким, что приводит к увеличению себестоимости извлекаемого золота и, как следствие, к снижению эффективности проекта [2, 5, 6]. Следовательно, при применении отмеченных способов предварительной подготовки сульфидного материала к циавыщелачиванию необходимо прежде осуществить обогащение исходных руд. Известно, что сульфиды хорошо флотируются. При этом в процессе флотации сульфидов может быть с достаточной полнотой извлечено и мелкое свободное золото [4]. Наиболее универсальным гидрометаллургическим методом преодоления технологической упорности сульфидных концентратов является автоклавное окисление под давлением кислорода 2,5-3,5 МПа (Pressure Oxidation – «POX») при температуре 200-230°C в сернокислой среде [7-10], так как данная технология применима к сырью различного минерального состава и способна обеспечивать высокое извлечение золота.

Методы исследования

В результате лабораторных исследований по флотационному обогащению руды месторождения «Иккижелон» получен флотоконцентрат для гидрометаллургических исследований.

При изучении вещественного состава использовали следующие приборы: оптико-эмиссионный спектрометр с индуктивно-связанной плазмой Varian 730-ES AxialEur (Австралия); атомно-абсорбционный спектрометр с системой быстрого последовательного анализа Varian AA-240FS

(Австралия); анализатор для одновременного определения серы и углерода Leco SC-144DR (США). Использовали инфракрасный (ИК) — спектроскопический, гравиметрический, титриметрический, фотометрический, дифрактометрический, количественный минералогический, микроскопический методы, а также проводили фазовый анализ. Содержание золота и серебра в пробе и в продуктах переработки определяли методом прямого пробирного анализа.



Результаты исследований и их обсуждение

В данной статье представлены результаты лабораторных исследований концентрата, полученного при флотационном обогащении мышьяковистой руды месторождения «Иккижелон» с тонковкрапленным золотом в пустой породе и в виде изоморфной примеси в сульфидах.

Химический состав исследуемого флотоконцентрата представлен на рис. 1. Содержание золота в оконцентрате составило 39,1 г/т, помимо золота ценным компонентом является серебро — 318 г/т.

Проведены исследования по выщелачиванию золота и серебра из флотоконцентрата исходной крупности с содержанием класса -0,071 мм — 95% на базе Иркутского национального исследовательского технического университета. При выщелачивании плотность пульпы составляла 40% твердого вещества. Концентрация NaCN — 2 г/дм³, загрузка CaO — 2 кг/т. Известь в тестах добавляли в виде порошка, а цианид — в виде крепкого раствора. Продолжительности выщелачивания — 24 ч. В качестве сорбента использовали активированный уголь марки Norit RO 3515, загрузку угля в процесс приняли равной 10% от объема жидкой фазы. Результаты сорбционного цианирования флотоконцентрата представлены в табл. 1.

Puc. 1. Химический состав исследуемого флотоконцентрата Fig. 1. Chemical composition of the flotation concentrate under investigation

Таблица 1

Результаты цианирования исходного флотоконцентрата

Table 1

Results of original flotation concentrate cyanidation

	Сод	держание, г/т		Извлече	ние, %	Расход реагента, кг/т		
в ко	нцен-	в хвостах цианирова-					NaCN	
тр	ате	ния	•	Au	Ag	полный	с учетом	CaO
Au	Ag	Au	Ag			11031112111	остатка	
32,7	294,0	14,68	71,2	55,1	75,8	13,8	11,8	2,8

Из результатов исследования можно заключить, что флотоконцентрат является упорным продуктом для его переработки методами агитационного цианирования. Извлечение Au из концентрата без специальной обработки составляет 55,1%.

Основной проблемой классической цианистой технологии переработки золотомышьяковистых флотоконцентратов является низкое извлечение драгоценных металлов, высокой расход цианида натрия и сложности обезвреживания хвостов от мышьяковистых соединений.

На основании проведенных лабораторных исследований по цианированию золото-мышьяковистого флотоконцентрата месторождения «Иккижелон» авторы пришли к выводу, что наиболее эффективным способом вскрытия упорного золота изданного флотоконцентрата к цианированию является высокотемпературное автоклавное окисление.

Сущность данного способа заключается в том, что водная пульпа, содержащая сульфиды (в частности, пирит и арсенопирит) нагревается в автоклаве до температуры 200–220°С под давлением кислорода, превосходящем упругость пара растворов.

Главными факторами, определяющими скорость и степень окисления сульфидов в автоклаве, являются температура и парциальное давление кислорода [11, 12].

Исследования по автоклавному окислению проведены в лабораторных автоклавах на флотоконцентрате исходной крупности.

Перед автоклавным окислением флотоконцентрата спульповывали при отношении Ж:Т = 2:1 и проводили подкисление до рН 2–3 в течение 1 часа при температуре 60°С с целью удаления карбонатов. Подкисленную пульпу загружали в автоклав, наливали требуемое количество дистиллированной воды, герметизировали реактор и включали перемешивание (число оборотов мешалки составляло 1200–1400 об./мин.) и нагрев пульпы.

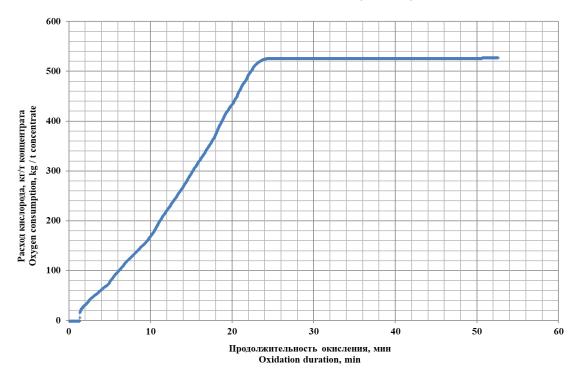
Когда температура пульпы достигала требуемого значения (220°C), в нее под избыточным давлением подавали кислород

(рабочее давление в автоклаве 3,4 МПа) в течение заданного времени. Сульфиды (пирит и арсенопирит) в указанных условиях практически полностью окисляются. В процессе автоклавного окисления непрерывно фиксировался расход кислорода с помощью расходомера.

Полученные результаты эксперимента по автоклавному окислению золотомышьяковистого флотоконцентрата показывают, что потребление кислорода в процессе окисления заканчивается за 24 мин., то есть процесс разложения сульфидов протекает достаточно быстро. При таких условиях сульфидная сера окисляется до сульфатной, железо переходит в раствор преимущественно в форме сульфата железа (III). Образующееся железо (III) гидролизуется с образованием вторичной твердой фазы: гематита, основного сульфата железа, ярозитов, смешанных арсенат-сульфатов [13, 14]. Ярозиты образуются в основном при наличии в растворе большого количества ионов калия, натрия, серебра [15]. Продолжительность автоклавного окисления флотоконцентрата составила 53 мин. Суммарный расход кислорода при этом составил 528,8 кг/т.

Для изучения вещественного состава продуктов высокотемпературного автоклавного окисления были выполнены химический и минералогический анализ. Ионный состав полученного раствора представлен в табл. 2.

Содержание основных компонентов в кеке автоклавного окисления представлено в табл. 3.


Результаты, приведенные в табл. 2, указывают на то, что продукты автоклавного окисления являются сложным по составу материалом. Основными компонентами раствора являются: S, Fe, SiO₂, Ca, Cu, Al, As.

По завершении процесса окисления получен кек, содержащий 5,21% серы, 5,09% из которых приходится на сульфатную и 0,5% — элементарную. Степень окисления серы при этом составила 97,28%. Выход кека в тестовых испытаниях — 92,5%. Содержание золота и серебра увеличивается

за счет образования кека окисления по сравнению с исходным флотоконцентратом. Также в кеке содержится 12,1 % мышьяка, который в основном находится в окисленной форме (11,0%).

Рентгенофазовым методом анализа исследован минеральный состав образца золото-мышьяковистого флотоконцентрата, претерпевший видоизменения в процессе высокотемпературного автоклавного окисления (табл. 4).

Puc. 2. Кривые поглощения кислорода при окислении золото-мышьяковистого флотоконцентрата Fig. 2. Curves of oxygen absorption under gold-arsenic flotation concentrate oxidation

Ионный состав раствора автоклавного окисления

Таблица 2

Table 2

Ionic composition of pressure oxidation solution

Компонент	Концентрация в растворе, мг/дм ³	Компонент	Концентрация в растворе, мг/дм ³
SiO ₂	1781	Р	0,05
Al	538	K	84,3
Sb	0,38	Na	22,2
As	531	Sr	1,2
Ba	0,29	Sn	0,05
Bi	0,050	Ti	0,18
Cd	0,37	W	0,05
Ca	737	Cr	1,4
Cu	574	Mn	65,5
Zn	47,3	Ni	2,2
Pb	0,62	Со	1,6
Mg Fe ³⁺	130	Sобщая/ Sgeneral	15577
	2650	Ag	0,05
Fe ²⁺	81	Au	0,3

Таблица 3

Фазовый состав кека автоклавного окисления

Table 3

Phase composition of pressure oxidation cake

Компонент	Массовая доля,%	Компонент	Массовая доля, %
SiO ₂	25,4	Sb	0,122
Al ₂ O ₃	3,9	As	12,1
CaO	0,94	Ва	0,054
MgO	0,22	Bi	0,0055
MnO	0,018	Cr	0,0098
P ₂ O ₅	0,042	Ni	0,0050
K₂O	1,5	Cu	0,092
Na ₂ O	1,0	Pb	0,31
TiO ₂	0,14	Sr	0,0043
Feокисленное / Feoxygenized	27,6	Sn	0,005
Fесульфидное / Fesulfide	0,14	W	0,01
ASокисленный / ASoxygenized	11,0	Zn	0,028
Asсульфидный / Assulfide	0,58	С	0,018
Sобщая / Sgeneral	5,21	CO ₂	0,1
Sсульфатная / Ssulphate	5,09	Ag	402
Sэлементарная / Selemental	0,50	Au	44,2

Таблица 4 Минеральный состав флотационного концентрата и кека автоклавного окисления Table 4

Mineral composition of flotation concentrate and pressure oxidation cake

Наименование продукта	Минерал	Массовая доля, %
	Кварц	14
	Карбонаты	5
•	Слюда, полевые шпаты (глина, гидрослюда)	10
Флотоконцентрат	Пирит	36
	Арсенопирит	32
	Халькопирит	3
	Итого	100
	Кварц	13
	Слюда, полевые шпаты (глина, гидрослюда)	9
Кек автоклавного	Арсенопирит	1
окисления	Клаудетит, скородит	36
	Ярозит	36
	Лимонит	5
	Итого	100

В результате изучения минерального состава продуктов установлено, что количество породообразующих и рудообразующих минералов во флотоконцентрате составляет 29% и 71% соответственно.

Показано, что арсенопирит в процессе высокотемпературного автоклавного окисления разрушается и превращается в клаудетит (As_2O_3) и скородит (As_2O_3) и скородит (As_2O_3). Отсутствие пирита в остатке после окисления свидетельствует о том, что при окислении он полностью разрушается. Образование ярозита в процессе автоклавного окисления негативно может влиять на извлечение серебра при цианировании.

После защелачивания твердый остаток подвергали сорбционному цианированию в течение 24 часов в условиях, описанных выше. Результаты цианирования кека автоклавного окисления в режиме (CIL) представлены в табл. 5.

Из данных табл. 5 видно, что максимальное извлечение золота и серебра составило 97,13 и 23,3% соответственно. Пол-

ный расход NaCN при цианировании — 9,36 кг/т. На расход цианида натрия в большой степени влияет наличие таких элементов, как железо, мышьяк, медь, а также содержащих их сульфидов в виде продуктов их полного или частичного разложения. Высокий расход извести, возможно, вызван ее взаимодействием с сульфатами, присутствующими в остатке окисления.

Низкое извлечение серебра свидетельствует о том, что при автоклавном окислении концентратов сульфиды разлагаются, высвобождая частицы золота и серебра, серебро переходит в раствор в виде сульфата (Ag₂SO₄), а затем в условиях гидролиза образует с сульфатами железа комплексное соединение - двойной гидратиросульфат аргентоярозит ванный $(AgFe_3(SO_4)_2(OH)_6)$, который выпадает в осадок. Указанные соединения серебра обладают высокой химической пассивностью, что обусловливает низкое извлечение серебра из кека автоклавного окисления прямыми гидрометаллургическими методами.

Таблица 5 Результаты сорбционного цианирования кека автоклавного окисления Table 5

Results of sorption cyanidation of pressure oxidation cake

Содержание, г/т		Извлечение, %		Расход реагента, кг/т		/т		
		в хвостах циани-				Na	CN	
ВК	еке	рова		Au	Ag	полный	с учетом	CaO
Au	Ag	Au	Ag			11031112111	остатка	
44,2	402	1,61	391	97,13	23,3	9,36	7,59	17,6

Заключение

Проведенные лабораторные исследования по выщелачиванию показали, что флотоконцентрат, полученный в ходе обогащения руды месторождения «Иккижелон» (Республика Таджикистан), является упорным по отношению к цианистому процессу продуктом. Основной причиной упорности является тонкая вкрапленность золота в сульфиды. Сорбционным цианированием исходного флотоконцентрата извлекается 55,1% золота и 75,8% серебра.

Результаты исследований по автоклавному окислению золото-мышьяковистого флотоконцентрата показали, что предварительное окисление сульфидов (пирит и арсенопирит) позволяет повысить эффективность извлечения золота до 97,13%.

Главными преимуществами технологии вскрытия золота из данного продукта на основании автоклавного окисления, в первую очередь, является то, что она применима к сырью различного минерального состава и способна обеспечивать высокое

Металлургия и материаловедение Metallurgy and Materials Science

извлечение золота при последующем цианировании. Кроме того, при автоклавном окислении отсутствуют газообразные соединения мышьяка и серы. Мышьяк выводится в виде малотоксичного арсената железа, сброс которого возможен в хвостохранилище, традиционное для складирования хвостов золотосодержащих руд (например, хвостохранилище наливного типа).

В дальнейшем авторами запланировано проведение экспериментов по автоклавному окислению золото-мышьяковистого флотоконцентрата с добавлением галогенсодержащих реагентов в процесс с целью снижения образования аргентоярозитов и повышения степени извлечения серебра при цианировании.

Библиографический список

- 1. Набойченко С.С., Ни Л.П., Шнеерсон Я.М., Чугаев Л.В. Автоклавная гидрометаллургия цветных металлов. Екатеринбург: Уральский государственный технический университет, 2002. 940 с.
- 2. Захаров Б.А., Меретуков М.А. Золото: упорные руды. М.: Руда и металлы, 2013. 452 с.
- 3. Рахманов О.Б., Аксенов А.В., Минеев Г.Г., Солихов М.М., Шомуродов Х.Р. Поиск рациональной технологии переработки упорных золотосодержащих руд с тонковкрапленным золотом месторождения «Иккижелон» (Северный Таджикистан) // Вестник Иркутского государственного технического университета. 2017. T. 21. № 6 (125). C. 119-127.
- 4. Рахманов О.Б., Аксенов А.В., Немчинова Н.В., Солихов М.М., Черношвец Е.А. Поиск оптимальной технологии переработки золотосодержащий руды месторождения «Иккижелон» (Республика Таджикистан) // Металлургия: технологии, инновации, качество «Металлургия - 2017»: труды XX Междунар. науч.-практ.конф.: в 2 ч. (г. Новокузнецк, 15-16 ноября 2017 г.). Новокузнецк, 2017. Ч. 1. С. 118-122.
- 5. Лодейщиков В.В.Технология извлечения золота и серебра из упорных руд. Иркутск: ОАО «Иргиредмет», 1999. 775 с.
- 6. Лодейщиков В.В. Извлечение золота из упорных руд и концентратов. М.: Недра, 1968. 203 с.
- 7. Епифоров А.В., Дзгоев Ч.Т., Емельянов Ю.Е., Евтушевич И.И., Болдырев А.В. Полупромышленные испытания технологии автоклавного окисления золотосодержащего сырья сложного минерального состава // Вестник Иркутского государственного технического университета. 2015. № 6 (101). С. 147-151. 8. Lauri R., Jari A., Olof F. Pressure oxidation of py-
- ritearsenopyrite refractory gold concentrate // Physicochem. Probl.Miner. Process. 2013. Vol. 49. P. 101-109.

- 9. Bin X., Yongbin Y., Qian L., Tao J., Shiqian L., Guanghui L. The development of an environmentally friendly leaching process of a high C, As and Sb bearing sulfide gold concentrate // Miner. Eng. 2016. Vol. 89. P. 138-147.
- 10. Weifeng L., Tianzu Y., DuchaoZh., Lin Ch., Younian L. Pretreatment of Copper Anode Slime with Alkaline Pressure Oxidative Leaching.Int. J. Miner. Proc. 2014. Vol. 128. No. 10. April. P. 48-54.
- 11. Баликов С.В., Гудков С.С., Емельянов Ю.Е., Богородский А.В., Епифоров А.В., Болдырев А.В., Дзгоев Ч.Т. Автоклавное окисление золотосодержащих руд и концентратов. Иркутск: Иргиредмет, 2016. 471 с.
- 12. Набойченко С.С. Автоклавная гидрометаллургия цветных металлов. В 3 т. Теоретические основы гидротермальных процессов. Екатеринбург: Уральский государственный технический университет, 2008. Т. 1. 376 c.
- 13. Mackiw V.N. Current trends in chemical metallurgy // The Canadian Journal of Chemical Engineering, 1968. Vol. 46. P. 3-15.
- 14. Gomeza M.A. Vibrational spectroscopy study of hydrothermally produced scorodite, ferric arsenate sub-hydrate and basic ferric arsenate sulfate (BFAS) / M.A. Gomeza [et al.] // Journal of Raman Spectroscopy. 2010. Vol. 41. No. 2. P. 212-221.
- 15. Пат. 2532697, Российская Федерация, С22В 11/06 (2006.01),C22B 3/04 (2006.01),C22B 3/44 (2006.01). Способ переработки серебросодержащих концентратов / А.В. Аксенов, С.Г. Рыбкин, А.Е. Сенченко, Ю.Г. Середкин; заявитель и патентообладатель Общество с ограниченной ответственностью Научно-исследовательский и проектный институт "ТОМС"; заявл. 28.02.2013; опубл. 10.11.2014. Бюл. № 31.

References

- 1. Naboichenko S.S., Shneerson Ya.M., Chugaev L.V. Avtoklavnava gidrometallurgiya tsvetnykh metallov [Pressure hydrometallurgy of non-ferrous metals]. Ekaterinburg: Ural state technical University Publ., 940 p. (In Russian).
- 2. Zakharov B.A., Meretukov M.A. Zoloto: upornye rudy [Gold: refractory ores]. Moscow: Ore and Metals Publ., 2013, 452 p. (In Russian).
- 3. Rakhmanov O.B., Aksenov A.V., Mineev G.G., Solikhov M.M., ShomyrodovKh.R. Search for rational technologies to process refractory gold ores with finely disseminated gold from the Ikkijelon deposits (North Tajikistan). Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta [Proceedings of Irkutsk State Technical University], 2017, vol. 21, no. 6, pp. 119-127. (In

0

Металлургия и материаловедение Metallurgy and Materials Science

- Russian). DOI: 10.21285/1814-3520-2017-6-119-127. (In Russian).
- 4. Rakhmanov O.B., Aksenov A.V., Nemchinova N.V., Solihov M.M., Chernoshvec E.A.
- Poisk optimal'noj tekhnologii pererabotki zolotosoderzhashchij rudy mestorozhdeniya "Ikkizhelon" (RespublikaTadzhikistan) [Search for the optimal processing technology for the gold-bearing ore of the Ikkijelon deposit (Republic of Tajikistan)]. Trudy XX Mezhdunarodnoj nauchno-prakticheskoj konferencii "Metallurgiya: tekhnologii, innovacii, kachestvo. Metallurgiya 2017" [Proceedings of XX International scientific and practical conference "Metallurgy: technologies, innovations, quality. Metallurgy-2017", Novokuznetsk, 15–16 November 2017]. Novokuznetsk, 2017, pp.118–122. (In Russian).
- 5. Lodeishchikov V.V. *Tekhnologiya izvlecheniya zolota i serebra iz upornykh rud* [Technology of gold and silver extraction from refractory ores]. Irkutsk, Irgiredmet JSC Publ., 1999, 775 p. (In Russian).
- 6. Lodeishchikov V.V. *Izvlechenie zolota iz upornykh rud i kontsentratov* [Gold recovery from refractory ores and concentrtaes]. Moscow: Nedra Publ., 1968, 203 p. (In Russian).
- 7. Epiforov A.V., DzgoevCh.T., EmelianovYu.E., Evtushevich I.I., Boldyrev A.V. POX pilot plant testing of complex gold-bearing mineral raw materials. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* [Proceedings of Irkutsk State Technical University], 2015, no. 6 (101), pp. 147–151. (In Russian).
- 8. Lauri R., Jari A., Olof F. Pressure oxidation of pyrite arsenopyrite refractory gold concentrate. Physicochem. Probl. Miner. Process, 2013, vol. 49, pp.101–109.

Критерии авторства

Рахманов О.Б., Аксёнов А.В., Минеев Г.Г., Назаров Х.М., Каримов М.И. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

- 9. Bin X., Yongbin Y., Qian L., Tao J., Shiqian L., Guanghui L. The development of an environmentally friendly leaching process of a high C, As and Sb bearing sulfide gold concentrate. Miner.Eng, 2016, vol. 89, pp.138–147.
- 10. Weifeng L., Tianzu Y., DuchaoZh., Lin Ch., Younian L. Pretreatment of copper anode slime with alkaline pressure oxidative leaching.Int. J. Miner. Proc., 2014, vol. 128, no. 10, April, pp. 48–54.
- 11. Belikov S.V., Gudkov S.S., Emelyanov Yu. E., Bogorodsky V. A., Epifanov A.V., Boldyrev A.V., Dzgoev T.H. *Avtoklavnoye okisleniye zolotosoderzhashchikh rud i kontsentratov* [Pressure *oxidation of gold-bearing ores and concentrates*]. Irkutsk: IrgiredmetPubl, 2016, 471 p. (In Russian).
- 12. Naboichenko S.S. *Avtoklavnaya gidrometallurgiya tsvetnykh metallov. Teoreticheskie osnovy gidroter-mal'nyh processov.* [Pressure hydrometallurgy of base metals]. Ekaterinburg: Ural state technical University, 2008, 376 p. (In Russian).
- 13. Mackiw V.N. Current trends in chemical metallurgy. The Canadian Journal of Chemical Engineering, 1968, vol. 46, pp. 3–15.
- 14. Gomeza, M.A. Vibrational spectroscopy study of hydrothermally produced scorodite, ferric arsenate sub-hydrate and basic ferric arsenate sulfate (BFAS). Journal of Raman Spectroscopy, 2010,vol. 41, no. 2, pp. 212–221.
- 15. Aksenov A.V., Rybkin S.G., Senchenko A. E., Seredkin Y.G. *Sposob pererabotki serebrosoderzhash-chih koncentratov* [Processing method of silver-containing concentrates]. Patent RF, no. 2532697, 2014.

Authorship criteria

Rakhmanov O.B., Aksenov A.V., Mineev G.G., Nazarov Kh.M., Karimov M.I. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Оригинальная статья / Original article УДК 629.33

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-173-180

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ РАДИАЛЬНОЙ ЖЕСТКОСТИ НАКЛОНЕННОГО КОЛЕСА

© Е.В. Балакина¹, А.Ш. Барасов², А.М. Гаврилов³, А.Д. Морозько⁴, Д.С. Сарбаев⁵, А.Н. Тодорев⁶, Н.Ф. Тюкин⁷

Волгоградский государственный технический университет, 400005, Российская Федерация, г. Волгоград, пр-т Ленина, 28.

РЕЗЮМЕ. ЦЕЛЬ. В данной статье приведены: методика, результаты экспериментального исследования и полученная расчетно-экспериментальная универсальная зависимость для расчета радиальной жесткости шины наклоненного колеса. МЕТОДЫ. Разработана экспериментальная методика для определения радиальной жесткости шины наклоненного колеса. Эксперименты проводились авторами с помощью специально созданной установки на кафедре технической эксплуатации и ремонта автомобилей Волгоградского государственного технического университета. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ. Получен поправочный коэффициент для пересчета радиальной жесткости вертикально расположенного колеса в радиальную жесткость наклоненного колеса при любом значении угла наклона а. Данные исследования дают представление об изменении коэффициента радиальной жесткости шины в зависимости от угла ее наклона и могут быть использованы при выборе параметров шасси автомобиля для улучшения его управляемости и устойчивости. ВЫВОДЫ. Установлено, что при наклоне колеса, независимо от направления наклона, в пределах допустимых значений по условиям работоспособности шины и сохранения ее износостойкости (до 5°) коэффициент радиальной жесткости шины уменьшается до 20%. В результате исследований получен поправочный коэффициент для пересчета радиальной жесткости вертикально расположенного колеса в радиальную жесткость наклоненного колеса при любом значении угла его наклона а. Полученные новые знания о величине радиальной жесткости шины позволяют более корректно моделировать свойства устойчивости и управляемости автомобиля.

Ключевые слова: наклоненное колесо, радиальная жесткость шины, расчетно-экспериментальная зависимость.

Информация о статье. Дата поступления 01 июня 2018 г.; дата принятия к печати 23 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Балакина Е.В., Барасов А.Ш., Гаврилов А.М., Морозько А.Д., Сарбаев Д.С., Тодорев А.Н., Тюкин Н.Ф. Экспериментальные исследования радиальной жесткости наклоненного колеса // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 173–180. DOI: 10.21285/1814-3520-2018-8-173-180

¹Балакина Екатерина Викторовна, доктор технических наук, профессор кафедры технической эксплуатации и ремонта автомобилей, e-mail: balakina@vstu.ru; fahrgestell2011@yandex.ru

Ekaterina V. Balakina, Doctor of technical sciences, Professor of the Department of Vehicle Technical Operation and Repair, e-mail: balakina@vstu.ru; fahrgestell2011@yandex.ru

²Барасов Арман Шоранович, студент, e-mail: armanbarasov@gmail.com

Arman Sh. Barasov, Student, e-mail: armanbarasov@gmail.com

³Гаврилов Александр Михайлович, студент, e-mail: MorningSadness@yandex.ru

Alexander M. Gavrilov, Student, e-mail: MorningSadness@yandex.ru

⁴Морозько Александр Дмитриевич, студент, e-mail: moroz20095@yandex.ru

Alexander D. Morozko, Student, e-mail: moroz20095@yandex.ru

⁵Сарбаев Дмитрий Сергеевич, аспирант, e-mail: sards93@gmail.com

Dmitriy S. Sarbaev, Postgraduate, e-mail: sards93@gmail.com

⁶Тодорев Алексей Николаевич, старший преподаватель кафедры сопротивления материалов, e-mail: AlexWork_2012@mail.ru

Aleksey N. Todorev, Senior Lecturer of the Department of Strength of Materials, e-mail: AlexWork_2012@mail.ru

⁷Тюкин Никита Сергеевич, студент, e-mail: stalkertnf@yandex.ru

Nikita S. Tyukin, Student, e-mail: stalkertnf@yandex.ru

EXPERIMENTAL STUDIES OF INCLINED WHEEL RADIAL STIFFNESS

E.V. Balakina, A.Sh. Barasov, A.M. Gavrilov, A.D. Morozko, D.S. Sarbaev, A.N. Todorev, N.F. Tyukin

Volgograd State Technical University, 28 Lenin pr., Volgograd, 400005, Russian Federation

ABSTRACT. PURPOSE. The article presents the procedure, experimental study results, and calculated experimental universal dependence obtained for calculating the radial stiffness of an inclined wheel. **METHODS.** An experimental technique has been developed to determine the radial stiffness of an inclined wheel tire. The authors carried out the experiments using a device specially designed at the Department of Vehicle Technical Operation and Repair of the Volgograd State Technical University. **RESULTS AND THEIR DISCUSSION.** A correction factor has been obtained to recalculate the radial stiffness of a vertical wheel to the radial stiffness of the inclined wheel at any value of the inclination angle α . These researches provide the data on the variation of the factor of tire radial stiffness depending on its inclination angle and can be used for the selection of vehicle chassis parameters in order to improve its controllability and stability. **CONCLUSIONS.** It has been determined that when the wheel is inclined regardless of the direction of inclination within the permissible values for tire operating conditions and preserving its wear resistance (up to 5°), the factor of radial stiffness of the tire decreases up to 20%. The study has resulted in obtaining a correction factor for recalculating the radial stiffness of the vertical wheel into the radial stiffness of the inclined wheel at any value of its inclination angle α . The obtained new knowledge about the value of the tire radial stiffness allows more accurate modeling of vehicle stability and controllability. **Keywords:** inclined wheel, radial stiffness of a tire, calculated experimental dependence

Information about the article. Received June 01, 2018; accepted for publication July 23, 2018; available online August 31, 2018.

For citation. Balakina E.V., Barasov A.Sh., Gavrilov A.M., Morozko A.D., Sarbaev D.S., Todorev A.N., Tyukin N.F. Experimental studies of inclined wheel radial stiffness. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 173–180. DOI: 10.21285/1814-3520-2018-8-173-180. (In Russian).

Введение

При проектном моделировании свойств активной безопасности автомобилей требуются знания об упругих свойствах шин, и, в первую очередь, в радиальном направлении [1–20].

Согласно ГОСТ 17697-72 [1], коэффициент нормальной жесткости шины – первая производная от нормальной нагрузки колеса по нормальному прогибу шины. При этом по рекомендации профессора И.В. Балабина, коэффициент нормальной жесткости шины следует более четко называть коэффициентом радиальной жесткости, что адекватно характеризует упругие свойства шины при наклоне колеса.

Радиальная жесткость шины является важной характеристикой при моделировании свойств активной безопасности автомобиля: устойчивости, управляемости и тормозной динамики [2–20]. В зависимости от величины радиальной жесткости, шина при движении автомобиля деформируется под воздействием вертикальной динамиче-

ской нагрузки, а ее образуемый вертикальный прогиб определяет величину длины пятна контакта колеса с дорогой, которая задает боковой увод эластичного колеса при наличии боковой силы. Как известно, устойчивость движения и управляемость автомобиля определяются, в основном, явлениями увода колес и колебаний управляемых колес вокруг осей поворота. При этом параметры колебаний управляемых колес тоже зависят от длины пятна контакта колеса с дорогой, поскольку, например, боковая реакция опорной поверхности реализуется только участком с трением покоя в пятне контакта, а он может перемещаться по длине пятна контакта в зависимости от параметров режима движения колеса. Рассмотренные явления определяются, конечно, и другими деформациями шины, в частности, боковой, но наибольший весовой коэффициент значимости, особенно при небольших боковых силах, не превышающих 20% от веса автомобиля, имеет радиальная деформация шины. Поэтому знания о величине радиальной жесткости шины позволяют, в первую очередь, более корректно моделировать свойства устойчивости и управляемости автомобиля. Помимо этих свойств, радиальная жесткость шины определяет гистерезисные потери в колесе и поэтому существенно влияет также на сопротивление качению и расход топлива.

Колеса на автомобиль устанавливают вертикально или наклоняют, то есть устанавливают с развалом.

Угол развала колеса — это угол между плоскостью вращения колеса и продольной плоскостью колеса, предусмотренный конструкторской документацией.

Положительный развал колес — это развал колес, при котором оси их вращения пересекаются выше оси автомобиля, в пределах колеи автомобиля.

Отрицательный развал колес — это развал колес, при котором оси их вращения пересекаются ниже оси автомобиля в пределах колеи автомобиля.

Традиционно передние управляемые колеса автомобиля устанавливаются с положительным развалом, который обеспечивает их вертикальное положение при прямолинейном движении по ровной поверхности вследствие компенсации зазоров в шарнирах колес. Также положительный развал управляемых колес уменьшает плечо обкатки, вследствие чего несколько уменьшаются амплитуды колебаний управляемых колес. У современных автомобилей угол развала передних колес положителен и имеет значения 0...+2°. Увеличение указанных углов увеличивает износ шин. Установка передних колес с отрицательным развалом нецелесообразна вследствие появления избыточной поворачиваемости автомобиля.

В последнее время, как видно из табл. 1, появилась тенденция установки задних колес с отрицательным развалом. Этот угол имеет значения 0...-2,5°. Экспериментально доказано, что это улучшает некоторые параметры управляемости и устойчивости движения легкового автомобиля [5, 9]. Также экспериментально доказано, что экс-

плуатационные наклоны колес несущественно изменяют конструктивные углы развала колес [9].

Как было уже сказано, при проектном моделировании свойств устойчивости движения и управляемости автомобиля требуются знания о радиальной жесткости шины.

Существуют универсальные зависимости для расчета радиальной жесткости шины, которые справедливы для вертикально расположенного колеса [4, 7, 8, 16]. В случае установки колеса с наклоном (положительным или отрицательным развалом) радиальная жесткость шины, очевидно, изменяется, и существующие универсальные зависимости в этом случае применять некорректно.

Авторы сделали первую попытку определения изменения радиальной жесткости шины при наклоне колеса в поперечной вертикальной плоскости. Для этого ими были проведены экспериментальные исследования шины 3.50-5 на специально созданной для этой цели установке на кафедре технической эксплуатации и ремонта автомобилей Волгоградского государственного технического университета. Фотография установки показана на рис. 1.

В ходе экспериментов были получены зависимости значений радиальной деформации в центре пятна контакта $Z_{\scriptscriptstyle A}$ наклоненного колеса от приложенной в центре пятна контакта нагрузки $R_{\scriptscriptstyle Z_{\scriptscriptstyle A}}$ при различных углах наклона колеса α . Результаты занесены в табл. 2.

Далее при каждом значении угла наклона α были аппроксимированы зависимости $R_{Z_A}=f(Z_A)$. Результаты в графическом виде показаны на рис. 2–4.

Во всех случаях угла наклона колеса α зависимость $R_{Z_A} = f(Z_A)$ аппроксимировалась квадратичной функцией:

$$R_{Z_A} = a + b \cdot Z_A + c \cdot Z_A^2,$$

где a,b,c – постоянные коэффициенты.

Полученные коэффициенты a,b,c приведены в табл. 3.

Таблица 1

Модели легковых автомобилей, имеющие задние колеса, установленные с отрицательным развалом

Table 1

Models of vehicles featuring negative rear wheel camber

Фирма	Модель автомобиля	Угол развала задних
		колес
Bentley	Continental Flying Spur	-1°25' (±10')
BMW	663С(купе)	-1°30' (±12')
	390L	-1°20' (±15')
	X70 (M1)	-1°30' (±15')
	MINI	-1°45' (±20')
	560L,X	-2°00' (±15')
Chrysler	Sebring	-0°36' (±6')
	Jeep Liberty	-1°06' (±15')
	Dodge Nitro	-0°25'
GM	Chevrolet TV558	-1°40'
	Cadillac	-0°54'(±36')
Ford	Focus	-1°30' (±10')
KIA	Spectra	-1°02' (±10')
Lexus	IS250 [205/55R16]	-1°01'
	[245/45R17]	-1°14'
	[255/40R18]	-1°14'
	IS250 Sport	-1°14'
	RX300 (пружинная подвеска)	-0°40'
	RX300 (подвеска с пневмоэлементами)	-0°58'
Mercedes –	T245,T169(B-class)	-1°30' (-30')
Benz	CL500	-2°00' (±30')
Toyota	Avensis	-0°54'
•	Camry	-1°00' (±5')
Honda	CR-V	-0°54'
	Jazz	-1°00' (±1')
Rolls Royse	Phantom	-2°30'
Subaru	Legacy Sedan	-0°45'
	Legacy Wagon	-0°30'
	Legacy Outback	-0°54'
	Forester	-0°50'
	Forester Turbo	-0°55'

Зависимости коэффициентов a,b,c от угла наклона α были аппроксимированы функциями вида $a,b,c=f\left(\alpha\right)$:

$$a = 1,9242 + 0,5324 \cdot \alpha + 0,064 \cdot \alpha^{2};$$

 $b = 66,9639 + 0,6376 \cdot \alpha - 0,5022 \cdot \alpha^{2};$
 $c = 7,7544 - 1,7230 \cdot \alpha + 0,1497 \cdot \alpha^{2}.$

По определению, радиальная жесткость шины

$$C_{T_Z} = \frac{\partial R_{Z_A}}{\partial Z_A} = \frac{\partial (a + bZ_A + cZ_A^2)}{\partial Z_A} = b + 2cZ_A,$$

где $C_{T_{\!\scriptscriptstyle Z}}$ – радиальная жесткость шины; a,b,c – коэффициенты аппроксимации.

В итоге получено промежуточное выражение:

$$C_{T_Z} \approx 66,96 + 0,64\alpha - 0,5\alpha^2 +$$

+ $(15,5-3,44\alpha + 0,3\alpha^2) \cdot Z_A$,

где $C_{T_{\mathbb{Z}}}$ – радиальная жесткость шины в Н/мм; Z_{A} – радиальный погиб шины в мм

при паспортной нагрузке колеса; α – угол наклона колеса в градусах.

Эта расчетно-экспериментальная зависимость не предназначена для расчета радиальной жесткости вследствие погрешностей аппроксимации, а также вследствие справедливости только для одной шины.

Puc. 1. Фотография установки Fig. 1. Device image

Таблица 2

Результаты эксперимента

Table 2

Results of the experiment

Нагрузка $^{R_{Z_{A}}}$, Н	Деформация $Z_{\scriptscriptstyle A}$, мм			
	при α = 0	при α = ±5	при α = ±10	
0	0	0	0	
96	1,17836	1,36348	1,8334	
192	2,25704	2,848	3,8804	
288	3,21468	3,91244	5,34	
384	3,84836	5,1976	6,408	
480	4,628	6,408	7,476	
576	5,34	7,298	8,188	
672	5,9452	8,188	9,078	
800	6,6928	9,3272	9,968	

Puc. 2. Результат аппроксимации зависимости $R_{Z_{_{\!A}}}=f(Z_{_{\!A}})\,$ для lpha = 0°

Fig. 2. Approximation result of the dependence $\,R_{Z_{_{\!A}}}=f(Z_{_{\!A}})$ for α = 0°

Puc. 3. Результат аппроксимации зависимости $R_{Z_{\scriptscriptstyle A}}=f(Z_{\scriptscriptstyle A})\,$ для lpha=±5°

Fig. 3. Approximation result of the dependence $R_{Z_{_{A}}}=f(Z_{_{A}})$ for α =±5°

Puc. 4. Результат аппроксимации зависимости $R_{Z_{\scriptscriptstyle A}}=f(Z_{\scriptscriptstyle A})\,$ для α =±10°

Fig. 4. Approximation result of the dependence $\,R_{\!_{Z_{\perp}}} = f(Z_{\!_{A}})$ for $\alpha = \pm 10^{\circ}$

Коэффициенты аппроксимации

Table 3

Таблица 3

Approximation coefficients

α	а	b	С
0	1,92	6,23	13,84
±5	66,96	57,6	23,12
±10	7,75	2,88	5,49

Обозначим через K_{α_Z} отношение коэффициента радиальной жесткости наклоненного колеса к коэффициенту радиальной жесткости вертикального колеса:

$$K_{\alpha_Z} = \frac{C_{T_Z}}{C_{T_{Z \alpha=0}}}.$$

После математических преобразований получено итоговое соотношение

$$K_{\alpha_{\tau}} \approx 1 + 0.0095 \cdot \alpha - 0.0075 \cdot \alpha^2$$
,

где α – угол наклона колеса в поперечной вертикальной плоскости в градусах (без учета знака).

Заключение

Установлено, что при наклоне колеса, независимо от направления наклона, в пределах допустимых значений по условиям работоспособности шины и сохранения ее износостойкости (до 5°), коэффициент радиальной жесткости шины уменьшается до 20%. Получен поправочный коэффициент для пересчета радиальной жесткости вертикально расположенного колеса в радиальную жесткость наклоненного колеса при любом углу наклона α. Его можно вычислить по универсальной зависимости:

$$K_{\alpha_{\alpha}} \approx 1 + 0.0095 \cdot \alpha - 0.0075 \cdot \alpha^2$$
,

где α – угол наклона колеса в поперечной вертикальной плоскости в градусах (без учета знака).

Данные исследования дают представление об изменении коэффициента радиальной жесткости шины в зависимости от угла ее наклона и могут быть использованы при выборе параметров шасси автомобиля для улучшения его управляемости и устойчивости.

Библиографический список

- 1. Автомобили. Качение колеса. Термины и определения [Электронный ресурс]. URL:http://gostex-pert.ru/data/files/1769772/bcad04dbc17df32968c4f5efa e2d4d29.pdf (12.05.2018).
- 2. Балабин И.В., Путин В.А., Чабунин И.С. Автомобильные и тракторные колеса и шины. М.: МГТУ «МАМИ», 2012. 919 с.
- 3. Балакина Е.В., Козлов Ю.Н., Тодорев А.Н. Изменение углов конструктивного наклона колес при движении легкового автомобиля // Автомобильная промышленность. 2016. № 12. С. 16–19.
- 4. Балакина Е.В., Кочетков А.В. Коэффициент сцепления шины с дорожным покрытием. М.: Инновационное машиностроение, 2017. 292 с.
- 5. Балакина Е.В., Козлов Ю.Н. Наклон колеса в поперечной вертикальной плоскости и его влияние на увод автомобиля // Автомобильная промышленность. 2012. № 8. С. 15–19.
- 6. Балакина Е.В., Зотов Н.М. Определение взаимного расположения сил, реакций и зон трения в пятне контакта эластичного колеса с твердой поверхностью // Трение и износ. 2015. Т. 36. № 1. С. 36–40.
- 7. Кнороз В.И. Работа автомобильной шины. М.: Издво Транспорт. 1976. 283 с.
- 8. Сальников В.И., Барашков А.А., Задворнов В.Н., Балакина Е.В. Расчетно-экспериментальные универсальные зависимости для определения радиальной жесткости шин // Автомобильная промышленность. 2014. № 7. С. 13–14.
- 9. Яценко Н.Н., Никульников Э.Н., Балакина Е.В., Козлов Ю.Н. Отрицательный развал задних колес и управляемость легкового автомобиля // Автомобильная промышленность. 2008. № 10. С. 22–23.

- 10. Ivković I. Dynamic friction in the braking, tire-road contact. Materials of International Conference on Traffic and Transport Engineering. Belgrade, 2014. P. 420–430.
- 11. Khaleghian Seyedmeysam. A technical survey on tire-road friction estimation. Friction. 2017. Vol. 5. No. 2. P. 123–146.
- 12. Minca Cr. The determination and analysis of tire contact surface geometric parameters. Review of the Air Force Academy. 2015. No 1. P. 149–154.
- 13. Mohamed El-Nashar. Vehicle Tire Road Forces. Deutschland, LAP LAMBERT Academic Publishing. 2010. 212 p.
- 14. Morris de Beer. Tyre pavement interface contact stresses on flexible pavements quo vadis? Materials of 8th Conference on asphalt pavements for Southern Africa, June 2012, 22 p.
- 15. Pacejka H.B. Tire and Vehicle Dynamics. Published by Elsevier Ltd, USA, 2012. 672 p.
- 16. Reza N. Jazar Vehicle Dynamics: Theory and Application. Springer Science + Business Media, LLC. 2008. 1015 p.
- 17. Seyedmeysam Kh. A technical survey on tire-road friction estimation. Friction. 2017. Vol. 5. No. 2. P. 123–146.
- 18. Svendenius Jakob. Tire Modeling and Friction Estimation. Department of Automatic Control Lund University, Lund, Sweden, 2007. 194 p.
- 19. The Pneumatic Tire. National Highway Traffic Safety Administration, 2006. 701 p.
- 20. Woodward David et al. The static contact patch of some friction measuring devices / Materials of 4th International Safer Roads Conference, Cheltenham, United Кіngdomю. 2014. 13 р.

References

1. Avtomobili. Kachenie kolesa. Terminy i opredeleniya [Automobiles. Wheel rolling. Terms and definitions]. Available at: http://gostexpert.ru/data/files/1769772/bcad04dbc17df32968c4f5efae2d4d29.pdf (accessed 12

May 2018).

2. Balabin I.V., Putin V.A., Chabunin I.S. *Avtomobil'nyye i traktornyye kolesa i shiny* [Automotive and tractor

- wheels and tires]. Moscow: MAMI Publ., 2012, 920 p. (In Russian).
- 3. Balakina E.V., Kozlov Y.N., Todorev A.N. Estimation of change of constructive angles inclinations of wheels at movement of the car. *Avtomobil'naya promyshlennost'* [Automotive industry]. 2016, no. 12, pp. 16–19. (In Russian).
- 4. Balakina E.V., Kochetkov A.V. *Koeffitsiyent stsepleniya shiny s dorozhnym pokrytiyem* [Coefficient of tire road grip]. Moscow: Innnovative mechanical engineering Publ., 2017, 292 p. (In Russian).
- 5. Balakina E.V., Kozlov Y.N. Wheel tilt in the transverse vertical plane and its effect on vehicle drift. *Avtomobil'naya promyshlennost'* [Automotive industry], 2012, no. 8, pp. 15–19. (In Russian).
- 6. Balakina E.V., Zotov N.M. Determination of the mutual arrangement of forces, reactions and friction zones in the contact patch of the elastic wheel and a solid surface. *Treniye i iznos* [Friction and Wear], 2015, vol. 36, no. 1, pp. 36–40. (In Russian).
- 7. Knoroz V.I. *Rabota avtomobil'noy shiny* [Vehicle tire operation]. Moscow: Transport Publ., 1973, 283 p. (In Russian).
- 8. Sal'nikov V.I., Barashkov A.A., Zadvornov V.N., Balakina E.V. Calculated experimental universal dependences for determination of tire radial stiffness. *Avtomobil'naya promyshlennost'* [Automotive industry], 2014, no. 7, pp. 13–14. (In Russian).
- 9. Yatsenko N.N., Nikul'nikov E.N., Balakina E.V., Kozlov Y.N. Negative camber of rear wheels and vehicle steerability. *Avtomobil'naya promyshlennost'* [Automotive industry]. 2008, no. 10, pp. 22–23. (In Russian).
- 10. Ivković Ivan et al. Dynamic friction in the braking, tireroad contact. Materials of International Conference on

Критерии авторства

Балакина Е.В., Барасов А.Ш., Гаврилов А.М., Морозько А.Д., Сарбаев Д.С., Тодорев А.Н., Тюкин Н.Ф. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

- Traffic and Transport Engineering, Belgrade, 2014, pp. 420–430.
- 11. Khaleghian Seyedmeysam et al. A technical survey on tire-road friction estimation. Friction. 2017, vol. 5, no. 2, pp. 123–146.
- 12. Minca Cristian The determination and analysis of tire contact surface geometric parameters. Review of the Air Force Academy. 2015, no 1, pp. 149–154.
- 13. Mohamed El-Nashar. Vehicle Tire Road Forces. Deutschland, LAP LAMBERT Academic Publishing, 2010, 212 p.
- 14. Morris de Beer et al. Tyre pavement interface contact stresses on flexible pavements quo vadis? Materials of 8th Conference on asphalt pavements for Southern Africa, June 2012. 22 p.
- 15. Pacejka H.B. Tire and Vehicle Dynamics. Published by Elsevier Ltd, USA, 2012. 672 p.
- 16. Reza N. Jazar Vehicle Dynamics: Theory and Application. Springer Science + Business Media, LLC, 2008, 1015 p.
- 17. Seyedmeysam Khaleghian et al. A technical survey on tire-road friction estimation. Friction. 2017, vol. 5, no. 2, pp. 123–146.
- 18. Svendenius Jakob. Tire Modeling and Friction Estimation. Department of Automatic Control Lund University, Lund, Sweden, 2007, 194 p.
- 19. The Pneumatic Tire. National Highway Traffic Safety Administration, 2006. 701 p.
- 20. Woodward David et al. The static contact patch of some friction measuring devices / Materials of 4th International Safer Roads Conference, Cheltenham, United Kingdom, 2014, 13 p.

Authorship criteria

Balakina E.V., Barasov A.Sh., Gavrilov A.M., Morozko A.D., Sarbaev D.S., Todorev A.N., Tyukin N.F. declare equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Оригинальная статья / Original article УДК 656.16

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-181-188

ОЦЕНКА ЗАГРЯЗНЕНИЯ АТМОСФЕРНОГО ВОЗДУХА ТРАНСПОРТНЫМИ ПОТОКАМИ НА ПЕРЕГОНАХ УЛИЦ (НА ПРИМЕРЕ г. OMCKA)

© Е.В. Парсаев¹, И.А. Тетерина², А.С. Кашталинский³

Сибирский государственный автомобильно-дорожный университет, 644080, Российская Федерация, г. Омск, просп. Мира, 5.

РЕЗЮМЕ. ЦЕЛЬ. В статье представлены результаты исследований, направленных на определение степени влияния транспортного потока на экологическую ситуацию примагистральных территорий г. Омска. МЕТОДЫ. Исследование проведено в соответствии с методикой, представленной в ГОСТ Р 56162-2014, которая позволяет рассчитать количество выбросов загрязняющих веществ от движущегося транспортного потока. РЕЗУЛЬТАТЫ И ИХ ОБ-СУЖДЕНИЕ. Графически представлены результаты исследований, которые отражают количество выбросов оксида углерода и оксидов азота в атмосферу за интервал времени, равный 20 мин., на участках городских магистралей г. Омска протяженностью 500 м. ВЫВОДЫ. На режимы движения транспортного потока могут оказывать значительное влияние: технические средства организации дорожного движения, расположение уличных пешеходных переходов, места расположения остановочных пунктов, уличных парковок и наличие участков, предназначенных для выполнения маневров (поворот, разворот). Кроме этого, авторами сделано предположение о возможности дополнения действующей методики значениями дополнительных выбросов загрязняющих веществ, учитывающими режимы движения транспортного потока на участке городской магистрали (разгон, торможение, работа на холостом ходу).

Ключевые слова: транспортные потоки, экологические загрязнения, загрязнение атмосферного воздуха, интенсивность движения, режимы движения.

Информация о статье. Дата поступления 18 июня 2018 г.; дата принятия к печати 19 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Парсаев Е.В., Тетерина И.А., Кашталинский А.С. Оценка загрязнения атмосферного воздуха транспортными потоками на перегонах улиц (на примере г. Омска) // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 181–188. DOI: 10.21285/1814-3520-2018-8-181-188

EVALUATION OF ATMOSPHERIC AIR POLLUTION BY TRAFFIC FLOWS ON ROAD AND STREET NETWORKS ON EXAMPLE OF OMSK

E.V. Parsaev, I.A. Teterina, A.S. Kashtalinsky

Siberian State Automobile and Highway University, 5, Mira pr., Omsk, 644080, Russian Federation

ABSTRACT. PURPOSE. The paper presents the results of studies dealing with the determination of the degree of traffic flow impact on the environmental situation in the near trunk road areas of the city of Omsk. **METHODS**. The study conducted in accordance with the methodology presented in GOST R 56162-2014 allows to calculate the amount of pollutant

¹Парсаев Евгений Вячеславович, старший преподаватель кафедры организации и безопасности движения, научный сотрудник научно-исследовательского отдела, e-mail: ogenru@yandex.ru

Evgeny V. Parsaev, Senior Lecturer of the Department of Traffic Organization and Safety, Scientific worker of the Research Department, e-mail: ogenru@yandex.ru

²Тетерина Ирина Алексеевна, кандидат технических наук, научный сотрудник научно-исследовательского отдела, e-mail: iateterina@mail.ru

Irina A. Teterina, Candidate of technical sciences, Scientific worker of the Research Department, e-mail: iateterina@mail.ru

³Кашталинский Александр Сергеевич, старший преподаватель кафедры организации и безопасности движения, e-mail: ask1188@mail.ru

Aleksandr S. Kashtalinskiy, Senior Lecturer of the Department of Traffic Organization and Safety, e-mail: ask1188@mail.ru

emissions from a moving traffic flow. **RESULTS AND THEIR DISCUSSION.** The graphically represented study results reflect the amount of atmospheric emissions of carbon monoxide (CO) and nitrogen oxides (NO_x) over the time interval of 20 minutes on 500 m long sections of Omsk main roads. **CONCLUSIONS.** Traffic flow driving regimes can be significantly influenced by: the technical means of traffic regulation, location of street pedestrian crossings, location of public transport stops, street parking places and availability of areas intended for maneuvering (turn and U-turn). Besides, the authors make a suggestion on the possibility to add the current methodology by the values of extra emissions of pollutants that take into account the traffic flow driving regimes on the sections of the main urban roads (acceleration, braking, idle running).

Keywords: traffic flows, environmental pollution, air pollution, traffic density, traffic driving regimes.

Information about the article. Received June 18, 2018; accepted for publication July 19, 2018; available online August 31, 2018.

For citation. Parsaev E.V., Teterina I.A., Kashtalinskiy A.S. Evaluation of atmospheric air pollution by traffic flows on road and street networks on example of Omsk. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 181–188. DOI: 10.21285/1814-3520-2018-8-181-188. (In Russian).

Введение

Среди отраслей экономики России транспортный комплекс вносит самый большой вклад в загрязнение окружающей среды [1].

Наряду с загрязнением почвы, поверхностных и подземных вод наибольшее негативное влияние автомобильный транспорт оказывает на качество атмосферного воздуха своими вибрационными, тепловыми и электромагнитными воздействиями. Загрязнения окружающей среды транспортным комплексом можно разделить на технологические и транспортные [2]. К технологическим загрязнениям относятся загрязнения, источниками которых являются строительно-дорожные машины, специальные транспортные средства, асфальтобетонные заводы и т.п. [2]. Источником транспортных загрязнений являются транспортные потоки, которые образует различный по составу автомобильный транспорт. Объем транспортных выбросов вредных веществ в атмосферу на городских магистралях значительно превышает объем технологических выбросов, поэтому в большей степени опаснее для экологической обстановки города

[1]. Уровень загрязняющего воздействия от городских транспортных потоков зависит от большого числа факторов, основными из которых являются интенсивность движения, скорость и состав транспортного потока. Остро проблема загрязнения атмосферного воздуха транспортными потоками стоит в крупных городах, в том числе и в г. Омске. Кроме того, в своем обращении к правительству, 18 апреля 2018 г. Президент Российской Федерации назвал города, где проблемы экологии стоят особо остро. Город Омск попал в их число.

«Транспортная стратегия Российской Федерации на период до 2030 г.» одной из основных задач ставит снижение вредного воздействия транспорта на окружающую среду [3].

В связи с вышесказанным, все большую актуальность приобретает вопрос по разработке и реализации мероприятий, направленных на уменьшение негативного воздействия автомобильного транспорта на окружающую среду (в том числе связанных с организацией дорожного движения), а также по оценке их эффективности [4, 5].

Постановка задачи

Для количественной оценки степени загрязнения атмосферного воздуха на примагистральной территории улично-дорож-

ной сети города (УДС) транспортными потоками предлагается составить экологический паспорт магистрали на все основные улицы города [6, 7]. Экологический паспорт — документ, содержащий информацию об уровне использования природопользователем ресурсов (природных, вторичных и др.) и степени воздействия его производства на окружающую природную среду, а также сведения о разрешениях на право природопользования, нормативах воздействий и размерах платежей за загрязнение окружающей природной среды и использование природных ресурсов [8].

В данном случае природопользователем выступает транспортный поток, степень воздействия — это количество выбросов загрязняющих веществ на примаги-

стральной территории за определенный период времени [9].

Данный документ позволяет выявлять неблагоприятные места и участки на каждой из магистралей для последующей разработки мероприятий, уменьшающих вредное воздействие от транспортного потока [8].

Получение исходных данных для расчета выбросов загрязняющих веществ автомобильным транспортом в атмосферу требует проведения натурных обследований структуры и интенсивности транспортных потоков с разделением их по составу, а также определения средней скорости движения на участках обследуемых магистралей.

Теория

Выбросы загрязняющих веществ транспортным потоком для городской магистрали подразделяются на пробеговые (выбросы движущимися автомобилями) и дополнительные (выбросы автомобилями, находящимися в зоне перекрестка на запрещающий сигнал светофора)⁴ [10]. В данной статье рассматриваются только пробеговые выбросы.

Согласно методике, выброс i-го загрязняющего вещества движущимся потоком автотранспортных средств на участке дороги с фиксированной протяженностью, при движении с постоянной скоростью $M_{\rm L_i}$ г. рассчитывается по формуле⁴

$$M_{L_{i}} = \frac{L}{1200} \sum_{1}^{k} M_{k,i}^{L} \cdot G_{k} \cdot r_{v_{k,i}}, \qquad (1)$$

где L — протяженность автомобильной дороги (или ее участка), км; $\mathbf{M}_{\mathbf{k},i}^{\mathbf{L}}$ — удельный пробеговый выброс i-го загрязняющего вещества автомобилями k-й группы; k — число групп автомобилей; G_k — фактическая наибольшая интенсивность движения, т.е. число автомобилей каждой из k-групп, проходящих фиксированное сечение выбранного участка автодороги в единицу времени (20 мин.) в обоих направлениях по всем полосам движения; $\mathbf{r}_{\mathbf{v}_{\mathbf{k},i}}$ — поправочный коэффициент, учитывающий среднюю скорость движения потока автотранспортных средств $\mathbf{v}_{\mathbf{k},i}$ (в км/ч) на выбранной автодороге (или ее участка) 4 .

Исследование

Для проведения расчетов из общего числа улиц, на которых проводились натурные обследования, было взято 5 городских магистралей, являющихся типовыми для г. Омска по СП 42.13330.2016⁵:

- пр. Мира (магистральная улица общегородского значения регулируемого движения с преимущественным составом легкового и общественного транспорта);
 - пр. Менделеева (магистральная

 $^{^4}$ ГОСТ 56162-2014. Вбросы загрязняющих веществ в атмосферу. Введ. 2015–07–01. М.: Изд-во стандартов, 2014. 12 с. / GOST 56162-2014. Atmospheric emissions of pollutants. Introduced 1 July 2015. Moscow: Standards Publ., 2014. 12 р.

⁵СП 42.13330.2016 Градостроительство, планировка и застройка городских и сельских поселений. Введ. 2017-07-01. М.: Минстрой России, 2016. 98 с. / SP 42.13330.2016 Urban planning and development of urban and rural settlements. Introduced 1 July 2017. Moscow: Ministry of Construction of Russia, 2016. 98 p.

улица районного значения с преимущественным составом легкового и общественного транспорта);

- ул. Барнаульская (магистральная улица районного значения с преимущественным составом легкового и грузового транспорта);
- ул. Октябрьская (улица местного значения в общественно-деловых и торговых зонах с преимущественным составом легкового транспорта);
- ул. Димитрова (улица местного значения в зонах жилой застройки с преимущественным составом легкового транспорта).

В связи с различной протяженностью улиц, для получения корректных данных в ходе проведения исследования, на каждой из магистралей был взят участок длиной 500 м с примерно схожими условиями движения (рис. 1):

- максимальная разрешенная скорость – 60 км/ч;
- наличие одного уличного пешеходного перехода;
- наличие мест с разрешенным правым поворотом;

- наличие мест с разрешенным левым поворотом и (или) разворотом;
- наличие уличных парковок, стоянок легковых такси и (или) мест остановок общественного транспорта (ООТ).

В таблице представлены характеристики исследуемых улиц. Учет интенсивности автотранспортных потоков проводился в будний день 27 октября 2017 г., в течение 3-х утренних (с 7:00 до 10:00), 3-х дневных (с 12:00 до 15:00) и 3-х вечерних (с 17:00 до 20:00) периодов времени суток⁶.

В качестве примера в статье представлены результаты обследования интенсивности дорожного движения вечернего временного интервала с 17:00 до 18:00 ч.

В последней колонке таблицы приведена средняя скорость по длине дороги (определялась по времени прохода участка автомобилем, движущимся в потоке).

Направление N_{1i} – движение транспорта по участку магистрали с севера на юг или с запада на восток, N_{2i} – движение транспорта по участку магистрали с юга на север или с востока на запад.

Результаты исследования и их обсуждение

В качестве примера на рис. 2 представлены результаты расчета количества выбросов загрязняющих веществ оксида углерода (СО) и оксидов азота (NO_{x)} транспортным потоком на пяти городских магистралях, расположенных в непосредственной близости от жилой застройки [11].

Значения выбросов СО при моделировании скорости движения автотранспортного потока 60 км/ч можно использовать для сравнения как эталонные (минимальные выбросы). Отсюда можно сделать вывод о том, что наиболее загрязненными улицами являются: просп. Менделеева и просп. Мира (от-

носительно высокая интенсивность движения), ул. Барнаульская (более тяжелый состав транспортного потока из-за наличия грузового транспорта)⁷ [12].

На рис. 3. представлены результаты расчета количества выбросов СО от движущегося автомобильного потока в прямом и обратном направлении. Различие в количестве выбросов СО в прямом и обратном направлениях на пр. Мира, ул. Барнаульская и пр. Менделеева (имеющие примерно одинаковые значения интенсивности N_{1i} и N_{2i}) объясняется разными скоростными режимами движения.

⁶Алешков Д.С., Суковин М.В. Безопасность жизнедеятельности и экологическая безопасность: метод. указания. Омск: СибАДИ, 2016. 18 с. / Aleshkov D.S., Sukovin M.V. Life safety and environmental safety: technical tips. Omsk: SibADI, 2016. 18 p.

⁷Разработка проектов организации дорожного движения на автомобильных дорогах общего пользования местного значения, относящихся к собственности муниципального образования: отчет о научно-исследовательской работе. Омск, 2018. 92 с. № AAAA-A17-117120620156-6 / Development of projects for road traffic organization on general purpose municipal roads: a report on the research work. Omsk, 2018. 92 р. No. AAAA-A17-117120620156-6

Характеристика исследуемых объектов Characteristics of the objects under investigation

Name of the street / number of lanes in both directions		Intensity of transport flow over a 20-minute time interval regarding the composition of traffic stream					Conditions of traffic / objects of traffic regulation		traffic	Average speed of traffic flow on the
		PC	М	В	Т<8т	Т>8т	HL	HR	НМ	section, km\h
Dimitrova street (from Volodarskogo street to Granichnaya street) / 2	N ₁₁	64	21	5	0	0	3	1	1	V1 =30
	N ₂₁	64	26	4	0	0	1	4	1	V2 =35
Mira Ave (from 70 years of SibADI street to OOT Medical academy / 6	N ₁₁	129	20	13	3	0	3 8		1	V 1 =15
	N ₁₂	150	51	0	4	0		8		
	N ₁₃	138	24	0	0	0				
	N ₂₁	102	17	9	2	0	4 6			V 2 =25
	N ₂₂	125	24	7	2	0		6	1	
	N_{23}	100	10	0	0	0				
Mendeleyev Ave (from Khimikov street to Belozerova street) / 4	N ₁₁	115	13	4	0	2	2	5	1	V 1 =25
	N ₁₂	105	7	0	1	2		J		
	N ₂₁	68	2	4	2	3	4	2	1	V 2 =10
	N_{22}	197	8	0	2	0				
Oktyabrskaya street (from Gertsena street to Ordzho- nikidze street) / 2	N_{11}	122	12	1	0	0	5	8	1	V 1 =25
	N ₂₁	100	2	0	4	0	8	7	1	V 2 =15
Barnaulskaya street (from Zheleznodorozhnaya street to 2-nd Vostochnaya) / 2	N ₁₁	171	35	6	18	6	3	4	1	V 1 =15
	N ₂₁	126	21	5	10	11	3	5	1	V2 =5

Примечание. 1. Л – легковой автомобиль; М – микроавтобус и грузовой автомобиль до 3,5 т; А – автобус; Г<8т – грузовые автомобили от 3,5 т до 8 т; Г>8т – грузовые автомобили свыше 8 т.; 2. ПЛ – помеха слева; ПС – помеха справа; ПП – помеха посередине (пешеходный переход).

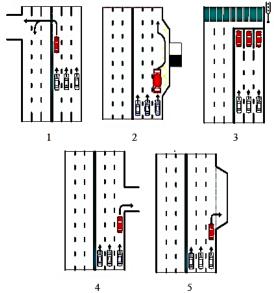


Рис. 1. Основные элементы перегона, влияющие на режимы движения транспортного потока: 1 – левый поворот и (или) разворот; 2 – место ООТ; 3 – пешеходный переход; 4 – правый поворот; 5 – уличная парковка

Fig. 1. Main factors influencing driving regimes of the traffic flow: 1 – left turn and (or) U-turn, 2 – place of a public transport stop, 3 – pedestrian crossing, 4 – right turn, 5 – street parking lot

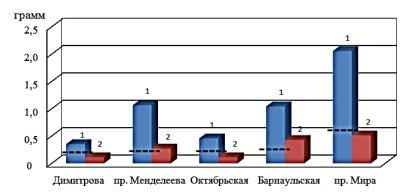
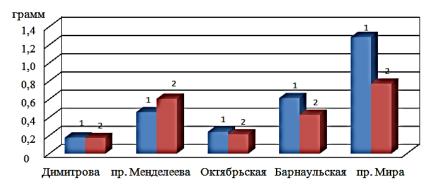



Рис. 2. Количество выбросов загрязняющих веществ от движущегося автотранспорта в вечерний час пик: 1 – количество загрязняющего вещества (CO);

2 – количество загрязняющего вещества (NO_x); - - - - количество загрязняющего вещества (CO) при постоянной скорости движения транспортного потока 60 км/ч

Fig. 2. Amount of pollutant emissions from the moving motor transport in the evening rush hour: 1 – amount of pollutant (CO); 2 – amount of pollutant (NO $_x$); - - - - amount of pollutant (CO) at the constant speed of the traffic flow of 60 km/h

Puc. 3. Количество выбросов CO от движущегося автотранспорта в вечерний час пик: 1 — направление N₁; 2 — направление N₂; Fig. 3. Amount of CO emissions from the moving motor transport in the evening rush hour: 1 — direction N₁; 2 — direction N₂;

На рис. 4 отражены результаты расчета количества выбросов NO_x от движущегося автомобильного потока в прямом и обратном направлении, которые позволяют

сделать вывод о том, что кроме интенсивности движения на эти выбросы оказывает влияние состав транспортного потока (наличие значительного числа автобусов и грузовых автомобили массой более 3,5 т).

Рис. 4. Количество выбросов NO_x от движущегося автотранспорта в вечерний час пик: 1 – направление N₁i; 2 – направление N₂i Fig. 4. Amount of NO_x emissions from the moving motor transport in the evening rush hour: 1 – direction N₁i; 2 – direction N₂i

Результаты проведенных исследований позволили выявить городские улицы с наибольшим содержанием СО и NO_x в атмосферном воздухе (просп. Мира – магистраль общегородского значения регулируемого движения и просп. Менделеева, ул. Барнаульская – магистральные улицы районного значения).

При обследовании средней скорости движения на магистралях выявилась следующая закономерность. На всех обследуемых магистралях присутствовали участки, где транспортный поток осуществлял движение неравномерно (торможение, разгон, остановка), чаще всего это происходило в местах, где производятся маневры (повороты, развороты, остановки, обгоны, перестроения), перед пешеходными переходами и остановками общественного транспорта, что влечет за собой увеличение количества

выбросов загрязняющих веществ от автотранспорта [8, 13].

Исследования позволили сделать вывод о том, что средняя скорость движения на участке магистрали не дает полной картины по количеству выбросов загрязняющих веществ, поскольку, как правило, поток не движется с такой скоростью равномерно, а происходит пульсирование пачек автомобилей в потоке (остановка, ускорение, замедление) на определенных участках. Поэтому при составлении экологического паспорта магистрали предлагается учитывать дополнительные локальные выбросы загрязняющих веществ от неравномерного транспортного потока (в местах расположения пешеходных переходов, искусственных неровностей, остановок общественного транспорта и др.).

Заключение и выводы

Произведенная оценка количества выбросов загрязняющих веществ от транспортных потоков на перегонах типовых улиц г. Омска позволила получить исходные данные для разработки экологических паспортов обследованных магистралей.

Результаты обследований, отраженные в экологическом паспорте магистрали позволяют выявлять наиболее загрязнен-

ные участки УДС, что может являться обоснованием приоритетности мероприятий по организации дорожного движения, направленных на снижение негативного воздействия от транспортных потоков. В работе использованы материалы, полученные в ходе выполнения муниципального контракта для департамента транспорта администрации г. Омска.

Библиографический список

- 1. Мотин В.В. Проблемы обеспечения транспортной безопасности при развитии современных информационных технологий // Транспортное право. 2013. № 2. С. 5–6.
- 2. Капский Д.В., Пегин П.А., Евтюков С.А. Определение экологических потерь в населенном пункте от движения транспортных средств // Вода и экология: проблемы и решения. 2017. № 3 (71). С. 147–158.
- 3. Рябоконь Ю.А., Храпова С.М. Методика определения уровня загрузки элементов улично-дорожной сети // Наука и техника в дорожной отрасли. 2010. № 1. С. 7–8.
- 4. Корчагин В.А., Гринченко А.В., Казарина М.В. Оценка экологической опасности видов транспорта на внутриобластных маршрутах // Вестник Липецкого государственного технического университета. 2016. № 1 (27). С. 87–92.
- 5. Ratrout N. T. Developing optimal timing plans for cyclic traffic along arterials using pre-timed controllers #

- WIT Transactions on state of the art in science and engineering. 2013. No. 66. P. 30–40.
- 6. Кашталинский А.С., Петров В.В. Влияние дорожнотранспортных факторов на неравномерность транспортных потоков в городах // Вестник Иркутского государственного университета. 2016. № 1(108). С. 116—123.
- 7. Wu X., Liu H., Gettman D. Identification of oversaturated intersections using high-resolution traffic signal data // Transportation Research Part C, 2010. Vol. 18. № 4. P. 626–638.
- 8. Парсаев Е.В. Влияние применяемых технических средств организации дорожного движения на уровень загрязнения городских магистралей транспортными потоками // Архитектурно-строительный и дорожно-транспортный комплексы: проблемы, перспективы, инновации: сб. материалов II Междунар. науч.практ. конф. Мин-во образования и науки РФ (г. Омск, 15–16 ноября 2017 г.). Омск, 2017. С. 165–168.

- 9. Капский Д.В. Экологические потери в дорожном движении // Вестник ИжГТУ им. М.Т. Калашникова. 2014. № 3 (63). С 163–167.
- 10. Hu H. Arterial offset optimization using archived high-resolution traffic signal data. / H. Hu, H. X. Liu // Transportation Research Part C: Emerging Technologies, 2013. 37. P. 131–144.
- 11. Ryabokon, Y. The Method of Determining the Number of Phases in the Traffic Light Cycle on the Allowable Intensity of Conflicting Flows. J. Transportation research
- procedia: 12th International Conference "Organization and Traffic Safety Management in large cities". 2016. Vol. 20. P. 571–577.
- 12. Liu H.X., Zheng J. Automatic generation of traffic signal timing plan // Report No. MN/RC 2014-38, Department of Civil, Environmental, and Geo-Engineering University of Minnesota, Minnesota, 2014. 67 p.
- 13. Guo R. Integrated multi-criteria signal timing design for sustainable traffic operations: Ph. D. dissertation; United States, Florida: University of South Florida, 2015. 147 p.

References

- 1. Motin V.V. Problems of ensuring transport security when developing informational technologies. *Transportnoe pravo* [Transportation Law], 2013, no. 2, pp. 5–6. (In Russian).
- 2. Kapskij D.V., Pegin P.A., Evtyukov S.A. Definition of ecological losses in the city from the movement of vehicles. *Voda i ekologiya: problemy i resheniya* [Water and Ecology: Problems and Solutions], 2017, no. 3 (71), pp. 147–158. (In Russian).
- 3. Ryabokon' Yu.A., Hrapova S.M. Methods for determining the level of street-road network elements loading. *Nauka i tekhnika v dorozhnoj otrasli* [Science and Technology in the Road Sector], 2010, no. 1, pp. 7–8. (In Russian).
- 4. Korchagin V.A., Grinchenko A.V., Kazarina M.V. Environmental hazard evaluation of means of transport on intraregional routes. *Vestnik Lipeckogo gosudarstvennogo tekhnicheskogo universiteta* [Bulletin of Lipetsk State Technical University], 2016, no. 1 (27), pp. 87–92. (In Russian).
- 5. Ratrout N. T. Developing optimal timing plans for cyclic traffic along arterials using pre-timed controllers. WIT Transactions on state of the art in science and engineering. 2013, no. 66, pp. 30–40.
- 6. Kashtalinskij A.S., Petrov V.V. Road factor effect on uneven traffic flows in cities. *Vestnik Irkutskogo gosudar-stvennogo universiteta* [Proceedings of Irkutsk State Technical University], 2016, no. 1(108), pp. 116–123. (In Russian).
- 7. Wu X., Liu H., Gettman D. Identification of oversaturated intersections using high-resolution traffic signal data. Transportation Research Part C, 2010, vol. 18, no. 4, pp. 626–638.
- 8. Parsaev E.V. Vliyanie primenyaemyh tekhnicheskih

Критерии авторства

Парсаев Е.В., Тетерина И.А., Кашталинский А.С. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

- sredstv organizacii dorozhnogo dvizheniya na uroven' zagryazneniya gorodskih magistralej transportnymi potokami [Influence of the used technical means of traffic organization on urban highway pollution level by traffic]. Materialy II Mezhdunarodnoj nauchno-prakticheskoj konferencii "Arhitekturno-stroitel'nyj i dorozhnotransportnyj kompleksy: problemy, perspektivy, innovacii" [Proceedings of II International scientific and practical Conference "Architectural-building and roadtransport complexes: problems, prospects, innovations", Omsk, 15–16 November 2017]. Omsk, 2017, pp. 165–168. (In Russian).
- 9. Kapskij D.V. Ecological losses in road traffic. *Vestnik Izhevskogo gosudarstvennogo tekhnicheskogo universiteta* [Bulletin of Kalashnikov Izhevsk State Technical University], 2014, no. 3 (63), pp. 163–167. (In Russian).
- 10. Hu H. Arterial offset optimization using archived high-resolution traffic signal data. / H. Hu, H. X. Liu. Transportation Research Part C: Emerging Technologies, 2013, 37, pp. 131–144.
- 11. Ryabokon, Y. The Method of Determining the Number of Phases in the Traffic Light Cycle on the Allowable Intensity of Conflicting Flows. J. Transportation research procedia: 12th International Conference "Organization and Traffic Safety Management in large cities", 2016, vol. 20, pp. 571–577.
- 12. Liu H.X., Zheng J. Automatic generation of traffic signal timing plan. Report No. MN/RC 2014-38, Department of Civil, Environmental, and Geo-Engineering University of Minnesota, Minnesota, 2014, 67 p.
- 13. Guo R. Integrated multi-criteria signal timing design for sustainable traffic opera-tions: Ph. D. dissertation; United States, Florida: University of South Florida, 2015, 147 p.

Authorship criteria

Parsaev E.V., Teterina I.A., Kashtalinskiy A.S. declre equal participation in obtaining and formalization of scientific results and bear equal responsibility for plagiarism.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Оригинальная статья / Original article УДК 656.072.4

DOI: http://dx.doi.org/10.21285/1814-3520-2018-8-189-198

ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОЙ СТРУКТУРЫ ПАРКА ПОДВИЖНОГО СОСТАВА ГОРОДСКОГО ПАССАЖИРСКОГО ТРАНСПОРТА ОБЩЕГО ПОЛЬЗОВАНИЯ С УЧЕТОМ ВЗАИМНОГО ВЛИЯНИЯ МАРШРУТОВ

© А.И. Фадеев¹, Е.В. Фомин²

Сибирский федеральный университет, 660074, Российская Федерация, г. Красноярск, ул. Киренского, 26.

РЕЗЮМЕ. ЦЕЛЬ. В данной работе рассмотрена задача повышения качества транспортного обслуживания населения путем совершенствования структуры парка подвижного состава городского пассажирского транспорта с учетом взаимного влияния маршрутов. МЕТОДЫ. Для повышения качества перевозок пассажиров сформулирована математическая модель расчета программы перевозок городского пассажирского транспорта по критерию минимума коэффициента динамического использования вместимости подвижного состава при известных ограничениях параметров транспортного процесса. РЕЗУЛЬТАТЫ. Разработан алгоритм численного решения задачи посредством направленного перебора вариантов. В статье описано программное обеспечение предложенного алгоритма. которое позволяет рассчитать оптимальную структуру парка подвижного состава городского пассажирского транспорта общего пользования, обеспечивающую максимальный уровень качества перевозок пассажиров соответствующего заданному пассажирскому тарифу. Выводы. В статье рассмотрены результаты проверки эффективности предложенной математической модели, алгоритма решения задачи и программного обеспечения на маршрутной сети г. Красноярска. Установлено, что рассчитанная программа перевозок обеспечивает существенное повышение качества транспортного обслуживания и эффективности городского пассажирского транспорта г. Красноярска. Средний по сети коэффициент динамического использования вместимости снизился с 0,3 до 0,23 при обеспечении рентабельной работы транспортных организаций, обслуживающих маршруты. В предлагаемой программе исключено переполнение подвижного состава; в исходной программе удельный вес маршрутов, обслуживаемых с превышением вместимости подвижного состава. достигал 60%. На 10% повысилась провозная способность парка за счет большего удельного веса автобусов большой вместимости, на 66% снижена интенсивность движения на наиболее напряженных участках сети, что оказало положительное влияние на дорожный трафик. Таким образом, разработанная математическая модель и алгоритм расчета программы перевозок городского пассажирского транспорта, основанный на направленном переборе вариантов при определенных ограничениях параметров транспортного процесса, позволяет рассчитывать оптимальную структуру парка подвижного состава с учетом взаимного влияния маршрутов.

Ключевые слова: наполнение подвижного состава, коэффициент использования вместимости, коэффициент неравномерности, программа перевозок.

Информация о статье. Дата поступления 06 июня 2018 г.; дата принятия к печати 27 июля 2018 г.; дата онлайнразмещения 31 августа 2018 г.

Формат цитирования. Фадеев А.И., Фомин Е.В. Определение оптимальной структуры парка подвижного состава городского пассажирского транспорта общего пользования с учетом взаимного влияния маршрутов // Вестник Иркутского государственного технического университета. 2018. Т. 22. № 8. С. 189–198. DOI: 10.21285/1814-3520-2018-8-189-198

DETERMINATION OF THE OPTIMAL STRUCTURE OF URBAN PUBLIC TRANSPORT ROLLING STOCK TAKING INTO ACCOUNT MUTUAL INFLUENCE OF ROUTES

A.I. Fadeev, E.V. Fomin

¹Фадеев Александр Иванович, кандидат технических наук, доцент кафедры транспорта, e-mail: fai@ak1967.ru Alexander I. Fadeev, Candidate of technical sciences, Associate Professor of the Department of Transport, e-mail: fai@ak1967.ru

²Фомин Евгений Валериевич, старший преподаватель кафедры транспорта, e-mail: 2325337@mail.ru Evgeny V. Fomin, Senior Lecturer of the Department of Transport, e-mail: 2325337@mail.ru

Siberian Federal University, 26, Kirensky St., Krasnoyarsk, 660074, Russian Federation

ABSTRACT. PURPOSE. The paper deals with the problem of improving the quality of transport services through the improvement of the structure of the urban public transport rolling stock fleet taking into account the mutual influence of routes. METHODS. To improve the quality of passenger transportation a mathematical model for urban passenger traffic program calculation is formulated based on the criterion of the minimum coefficient of dynamic utilization of the rolling stock capacity and certain restrictions of transport process parameters. RESULTS. An algorithm has been developed for the numerical solution of the problem by means of a directed enumeration of possibilities. The article describes the software of the proposed algorithm which allows to calculate the optimal structure of the rolling stock fleet of public passenger transport providing the maximum quality level of passenger transportation corresponding to the specified passenger tariff. **CONCLUSIONS.** Having considered the testing results of the effectiveness of the proposed mathematical model, problem solving algorithm and software on the route network of the Krasnoyarsk city, it was determined that the calculated transportation program significantly improves the quality of transport services and efficiency of urban passenger transport in the city of Krasnoyarsk. The network's average dynamic capacity utilization ratio has decreased from 0.3 to 0.23 while ensuring the cost-effective operation of transport organizations that service the routes. The proposed program excludes the overpacking of the rolling stock, while in the initial program the proportion of the routes served with the exceeded capacity of rolling stock reached 60%. The transportation capacity of the rolling stock fleet has increased by 10% due to the higher proportion of larger capacity buses. The traffic intensity in the busiest sections of the network has been reduced by 66%, which favorably affected the road traffic. Therefore, the developed mathematical model and the algorithm for calculating the program of urban passenger transportation based on a directional enumeration of possibilities under certain restrictions on the parameters of the transport process, allows to calculate the optimal structure of the rolling stock fleet with regard to the mutual influence of routes.

Keywords: rolling stock capacity, capacity utilization ratio, irregularity coefficient, transportation program

Information about the article. Received June 06, 2018; accepted for publication July 27, 2018; available online August 31, 2018.

For citation. Fadeev A.I., Fomin E.V. Determination of the optimal structure of urban public transport rolling stock taking into account mutual influence of routes. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* = Proceedings of Irkutsk State Technical University. 2018, vol. 22, no. 8, pp. 189–198. DOI: 10.21285/1814-3520-2018-8-189-198. (In Russian).

Постановка задачи

Рассмотрим задачу оптимизации структуры парка подвижного состава городского пассажирского транспорта (ГПТ) с учетом взаимного наложения маршрутов и существующих ограничений транспортного процесса.

Известен транспортный спрос, представленный в виде матрицы пассажирских корреспонденций.

На транспортной сети организованы маршруты, причем на сети имеются участки, по которым проложено несколько маршрутов (наложение, пересечение маршрутов). Наличие конкурирующих маршрутов приводит к тому, что некоторые пассажирские корреспонденции могут быть обслужены несколькими маршрутами. В результате количество пассажиров, перевезенных по маршруту, зависит от интенсивности движения – увеличивается за счет перераспределения пассажирских корреспонденций (с уменьше-

нием интервала движения транспортных средств и наоборот). При этом снижение интервала движения приводит к уменьшению количества пассажиров, приходящихся на одно транспортное средство. Ограниченный уровень доходов от перевозок (который обусловливается действующим пассажирским тарифом и нормативом бюджетных субсидий) определяет уровень финансовых ресурсов, которые могут быть израсходованы на транспортный процесс [1–5].

Расчет программы перевозок заключается в определении для каждого маршрута класса подвижного состава и интенсивности (интервал) движения при установленных ограничениях (норматив) технико-эксплуатационных показателей.

Качество транспортного обслуживания будем оценивать степенью использования вместимости (наполнением) транспортных средств.

Предельный уровень финансовых ресурсов для выполнения транспортного процесса (полученный через пассажирский тариф или за счет бюджетного субсидирования) будем устанавливать через норматив расходов на 1 км пробега транспортного средства по маршруту. Соизмерение расходов с доходами будем осуществлять через количество пассажиров, приходящихся на 1 км пробега транспортного средства по маршруту [6–11].

Таким образом, требуется рассчитать программу перевозок пассажиров по маршрутной сети городского пассажирского транспорта, обеспечивающую удовлетворение целевой функции минимума коэффициента динамического использования вместимости:

$$\bar{\gamma}_{o} = \frac{\sum_{k} P_{k}^{u}}{\sum_{k} P_{k}^{u}} \Rightarrow \min \tag{1}$$

при следующих ограничениях:

– коэффициент использования вместимости подвижного состава

$$\gamma_{\partial k} \le \gamma_{\max}$$
; (2)

 интенсивность движения по участкам маршрутной сети

$$\sum_{k} a_{k} \leq a_{ij}^{\max}, i \subset I_{k}, j \subset I_{k}; \quad (3)$$

 интенсивность движения по маршруту

$$a_{\min} \le a_k \le a_{\max}$$
; (4)

экономическая эффективность перевозок

$$q_k^{km} \ge Q_m^{km} \,, \tag{5}$$

где: $\bar{\gamma}_{a}$ – среднечасовой коэффициент динамического использования вместимости на сети; P_{k}^{u} – среднечасовая транспортная работа по k-му маршруту, пасс-км/час; $P_k^{\prime^q}$ среднечасовая номинальная транспортная работа по k-му маршруту (транспортная работа при полном использовании вместимости подвижного состава), пасс-км/час; a_{\min}, a_{\max} – ограничение интенсивности движения подвижного состава по маршрутам, ед./час; a_{ν} – интенсивность движения по kму маршруту, ед./час; q_k^{km} – количество пассажиров на один км пробега подвижного состава по k-му маршруту; $Q_{\scriptscriptstyle m}^{\scriptscriptstyle km}$ - минимальное количество пассажиров на один км пробега *т-*го класса автобуса (на *к*-м маршруте), обеспечивающее рентабельную работу; $\gamma_{\partial k}$ – среднечасовой коэффициент динамического использования вместимости для \emph{k} -го маршрута; γ_{\max} – предельный коэффициент использования вместимости транспортных средств; $I_{\scriptscriptstyle k}$ – множество остановочных пунктов k-го маршрута; a_{ij}^{\max} – ограничение пропускной способности іі участка маршрутной сети.

Для решения задачи необходимо — варьируя классом транспортных средств и интервалом их движения по маршрутам — получить оптимальные значения данных показателей в смысле целевой функции (1). Для этого требуется установить метод численного решения поставленной задачи.

Алгоритм решения задачи

Алгоритм решения задачи основан на принципе направленного перебора вариантов (см. рис. 1).

На **подготовительном этапе** формируется первая допустимая программа перевозок:

– по всем маршрутам устанавливается минимальная интенсивность движения, которая определяется действующими нормативами (например, 4 единицы в час, что соответствует минимально возможному интервалу движения, равному 15 мин.);

191

- для всех маршрутов устанавливается класс автобуса с наибольшей вместимостью:
- для каждого маршрута рассчитываются количество перевезенных пассажиров и пассажирооборот;
- для каждого маршрута определяются технико-эксплуатационные показатели, такие как пробег по маршруту, количество место-километров, коэффициент динамического использования вместимости, количество пассажиров на один километр пробега по маршруту и количество подвижного состава, необходимое для выполнения программы перевозок;
- в соответствии с полученным значением количества пассажиров на один километр пробега для каждого маршрута устанавливается класс подвижного состава из условия:

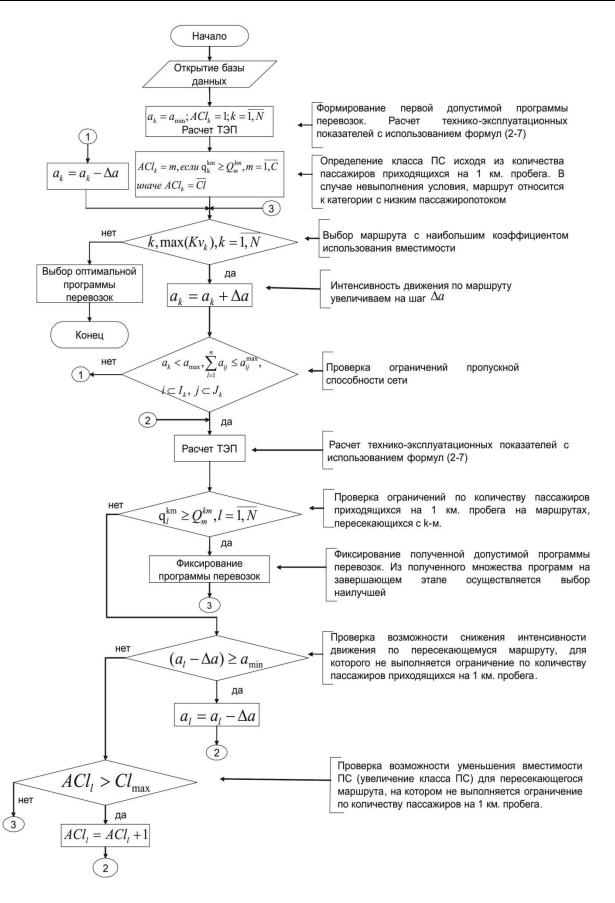
$$q_k^{km} \geq Q_c^{km}$$
,

где: q_k^{km} – количество пассажиров на один километр пробега по k-му маршруту, пасс/км; Q_c^{km} – минимальное количество пассажиров на один километр пробега по маршруту, необходимое для рентабельной эксплуатации транспортного средства c-го класса, пасс/км.

В результате выполнения подготовительного этапа расчета для некоторых маршрутов может быть получен низкий показатель количества пассажиров на один километр пробега по маршруту, который не позволяет использовать ни один из имеющихся классов транспортных средств. Эти маршруты (с низкой интенсивностью пассажирских потоков) подлежат бюджетному субсидированию. Для них устанавливается класс транспортного средства по согласованию с заказчиком (уполномоченной организацией, осуществляющей регулирование соответствующего сегмента рынка пассажирских перевозок). На следующем этапе расчета для таких маршрутов не будут учитываться ограничения по минимальному пассажиров на ОДИН

пробега [12-14].

На этапе расчета осуществляется пошаговое улучшение программы перевозок. Этап расчета осуществляется до тех пор, пока возможно сформировать новый вариант программы перевозок, удовлетворяющий установленным ограничениям.


Новый вариант программы перевозок формируется по следующему алгоритму:

- 1. В последней программе перевозок выбирается маршрут с наибольшим коэффициентом использования вместимости (*k*-й маршрут). Если коэффициент использования вместимости выбранного маршрута меньше установленного предела, то процесс расчета считается завершенным.
- 2. Интенсивность движения по k-му маршруту увеличивается на шаг Δa . Для всех маршрутов рассчитываются технико-эксплуатационные показатели.

Увеличение интенсивности движения по k-му маршруту может привести к нарушениям ограничений по рентабельной работе транспортных организаций на маршрутах, пересекающихся с k-м. Проверка данного ограничения осуществляется следующим образом: выбираются маршруты, для которых количество пассажиров, приходящихся на один километр пробега, ниже установленного предела для используемого класса транспортного средства. При этом. как упоминалось выше, не учитываются маршруты с низким пассажиропотоком (подлежащие бюджетному субсидированию), определенные на подготовительном этапе расчета.

Для маршрутов, не обеспечивающих рассматриваемое ограничение, возможны следующие варианты корректировки программы перевозок:

– уменьшение интенсивности движения подвижного состава на шаг Δa (увеличение интервала движения подвижного состава). Возможность уменьшения интенсивности движения по маршруту ограничивается минимальным значением (заданным максимальным интервалом движения по маршруту);

Puc. 1. Алгоритм расчета программы перевозок пассажиров Fig. 1. Algorithm for passenger transportation program calculation

– использование класса подвижного состава с меньшей величиной ограничения по количеству пассажиров на один километр пробега по маршруту.

Проверяем каждый из возможных вариантов удовлетворения ограничения рентабельного обслуживания пересекающихся маршрутов. После внесения изменения в программу перевозок осуществляется перерасчет технико-эксплуатационных показателей.

Если ни один из вариантов не обеспечивает удовлетворения ограничения рентабельного обслуживания маршрутов, то увеличение интенсивности движения по kму маршруту следует признать невозможным. Однако на практике возможна ситуация, когда маршрут, по своим параметрам, блокирует увеличение интенсивности движения по k-му маршруту, работающему с существенной перегрузкой. В этом случае решение может быть принято по согласованию с заказчиком. Маршрут, блокирующий увеличение интенсивности движения по kму маршруту, может быть переведен в разряд субсидируемых или изменен. Тогда увеличение интенсивности движения по k-му маршруту принимается.

В данном случае – для предотвращения блокирования маршрутов с существенной нагрузкой за счет пересекающихся маршрутов в алгоритм введено значение коэффициента динамического использования вместимости, выше которого пересекающиеся маршруты в случае невозможности соответствующей корректировки программы перевозок по ним автоматически переводятся в разряд субсидируемых.

Если после увеличения интенсивности движения по *k*-му маршруту все ограничения выполняются, то текущая программа перевозок считается допустимой.

Переходим к пункту 1 для формирования следующей допустимой программы перевозок.

В случае если для *k*-го маршрута в текущей программе перевозок ограничения не выполняются, то текущая программа перевозок отвергается. Осуществляется переход к п. 1 для выбора *k*+1 маршрута.

Процедура расчета завершена, если в последней программе перевозок не нашлось ни одного маршрута, для которого было бы допустимым увеличение интенсивности движения подвижного состава (уменьшение интервала движения по маршруту).

Расчет маршрутной сети г. Красноярска

В качестве примера рассмотрим маршрутную сеть г. Красноярска (рис. 2).

Объем перевозок всеми видами пассажирского транспорта общего пользования (кроме железнодорожного) составляет порядка 750 тыс. пассажиров в будний день. В настоящее время основной объем перевозок (88,8%) осуществляется автобусом. Оценку эффективности алгоритма осуществим на маршрутной сети автобуса, исключив из матрицы пассажирских корреспонденций перевозки электротранспортом.

Для расчета использована матрица пассажирских корреспонденций, полученная из транзакций безналичного расчета за проезд в городском пассажирском транспорте г. Красноярска, предоставленная муниципальным казенным учреждением «Красноярскгортранс» (октябрь, 2016 г.). Из

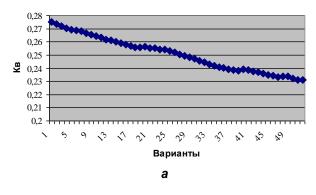
пассажирских корреспонденций, полученных в результате обработки транзакций, сформирована средневзвешенная матрица пассажирских корреспонденций за рабочий день.

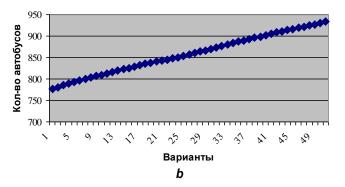
При расчете для автобусной маршрутной сети г. Красноярска оптимальная программа перевозок получена на 51-й итерации. На 52-м шаге расчет закончен, так как ни по одному из маршрутов увеличение интенсивности движения не проходит по ограничениям задачи. Процесс пошагового улучшения программы перевозок проиллюстрирован на рис. 3.

На рис. 4. приведена структура маршрутов по коэффициенту использования вместимости исходного и результирующего вариантов программы перевозок. Из рисунка видно, в результате оптимизации

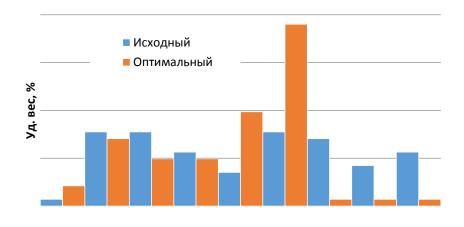
Puc. 2. Маршрутная сеть г. Красноярска Fig. 2. Route network of the city of Krasnoyarsk

коэффициент динамического использования вместимости большей части маршрутов (около 60%) находится в пределах от 0,2 до 0,3. В сети три маршрута имеют коэффициент использования вместимости более 0,3. Это маршруты, обслуживающие специфические пассажиропотоки с более высоким значением средней дальности поездки, чем по сети в целом. Такие маршруты обслуживают отдаленные микрорайоны, например, маршрут № 12 «Предмостная пл. — совхоз Удачный».


Маршруты с небольшим значением коэффициента использования вместимости обслуживают пассажирские потоки низкой


интенсивности и требуют бюджетного субсидирования для обеспечения рентабельной работы транспортных организаций.

В таблице даны сравнительные параметры исходной и полученной в результате оптимизации структуры парка автобусов. В качестве исходного варианта принят парк автобусов, полученный по результатам обследования пассажирских потоков г. Красноярска, проведенного в 2006 г. Уже в 2007 г. Сибирским федеральным университетом завершилась научно-исследовательская работа по проектированию комплексной маршрутной системы общественного транспорта г. Красноярска. В 2011 г. была


утверждена концепция развития пассажирского транспорта общего пользования в г. Красноярске на 2011–2015 гг. с перспективой до 2020 г., разработанная Сибирским федеральным университетом. В данных ра-

ботах при формировании рекомендаций по совершенствованию структуры парка подвижного состава использовались положения методики, рассматриваемой в настоящей статье.

Puc. 3. Иллюстрация процесса пошагового улучшения программы перевозок: а – коэффициент динамического использования вместимости; b – необходимое количество подвижного состава Fig. 3. Visualization of the process of step-by-step improvement of the transportation program: a – coefficient of dynamic capacity utilization; b – required amount of the rolling stock

Коэффициент использования вместимости

Puc. 4. Структура маршрутов по коэффициенту использования вместимости Fig. 4. Route structure by the capacity utilization factor

Заключение

Таким образом, представленная в настоящей работе математическая модель, алгоритм решения задачи и программное обеспечение позволяют формировать структуру парка подвижного состава, обеспечивающую существенное повышение качества транспортного обслуживания и эффективности ГПТ. Это показано на примере ГПТ г. Красноярска.

Из таблицы видно, что средний коэффициент динамического использования вместимости в предлагаемой структуре парка уменьшился с 0,3 до 0,23, в программе перевозок отсутствуют маршруты, обслуживаемые с превышением вместимости. В исходной программе удельный вес таких маршрутов составлял около 60%.

Сравнительные параметры исходной и оптимальной структуры парка автобусов ГПТ г. Красноярска Comparative parameters of the original and optimal structure of the fleet

of buses of the municipal public transport of the city of Krasnoyarsk

Параметр	Исходный парк	Оптимальный парк
Коэффициент динамического использования вместимости	0,3	0,23
Маршрутов с превышением использования вместимости ($\gamma_o > 0.4$), %	60	0
Количество подвижного состава на сети в пиковые периоды,	1353	938
в том числе:		
– малого класса	45%	11%
– среднего класса	21%	28%
– большого класса	34%	61%
Провозная способность, пасс./мест	91436	100940
Максимальная интенсивность движения (на напряженных участках сети), ед/час	200	120
Пассажиров на 1 км пробега по маршруту, пасс./км	2,9	3,8
Коэффициент приведения структуры парка	0,85	0,92
Приведенное число пассажиров на 1 км пробега по маршруту, пасс./км	3,41	4,13
Экономический эффект на 1 км пробега по маршруту, руб./км	-	15,8

Несмотря на снижение количества подвижного состава (ПС) в проектной программе перевозок на 10%, повысилась провозная способность парка за счет большего удельного веса автобусов большой вместимости.

На 66% снижена интенсивность движения на наиболее напряженных участках сети, что оказало положительное влияние на дорожный трафик.

Библиографический список

- 1. Ефремов И.С., Кобозев В.М., Юдин В.А. Теория городских пассажирских перевозок [Электронный ресурс]. URL: http://padaread.com/?book=108241 (дата обращения: 24.05.2018).
- 2. Спирин И.В. Перевозки пассажиров городским транспортом. М.: Академкнига, 2004. 413 с.
- 3. Артынов А.П., Скалецкий В.В. Автоматизация процессов планирования и управления транспортными системами. М.: Наука, 1981. 280 с.
- 4. Фадеев А.И., Ковалев В.А., Фомин Е.В. Нормирование параметров системы пассажирского транспорта общего пользования // Вестник Иркутского государственного технического университета. 2014. № 12. С. 179–183.
- 5. Фадеев А.И., Фомин Е.В. Методика решения задачи определения оптимальной структуры парка подвижного состава городского пассажирского транспорта общего пользования // Вестник Иркутского государственного технического университета. 2018.Т. 22. № 1. С. 218–227.
- 6. Якунина Н.В. Методология повышения качества перевозок пассажиров общественным автомобильным транспортом [Электронный ресурс]. URL: http://www.dslib.net/remont-transporta/metodologija-

- povyshenija-kachestva-perevozok-passazhirov-obwestvennym-avtomobilnym.html (дата обращения: 24.05.2018).
- 7. Манаев К.И. Обоснование рациональной структуры автотранспортно-контейнерного парка для сбора и вывоза твердых бытовых отходов [Электронный ресурс]. URL: http://net.knigi-x.ru/24tehnicheskie/699740-1-obosnovanie-racionalnoy-strukturi-avtotransportno-konteynernogo-parka-dlya-sbora-vivozatverdih.php
- 8. Носов А.Л. Показатели оценки качества транспортного обслуживания пассажиров [Электронный ресурс] // Электронный журнал «Концепт». 2016. № 12. URL: http://e-koncept.ru/2016/16269.htm.
- 9. Дрючин Д.А., Майоров М.А. Основные направления повышения качества транспортного обслуживания населения городским пассажирским транспортом по регулярным маршрутам // Вестник Оренбургского государственного университета 2015. № 4. (179).С. 30–36.
- 10. Якунина Н.В., Якунин Н.Н. Методология повышения качества перевозок пассажиров общественным автомобильным транспортом. Оренбург: ООО ИПК «Университет», 2013. 289 с.
- 11. The International Associationof Public Transport

- (UITP) [Электронный ресурс]. URL: http://www.uitp.org (дата обращения: 01.04.2018).
- 12. TRB Highway Capacity and Quality of Service Committee [Электронный ресурс]. URL: http://sites.kittelson.com/HCQS (дата обращения: 01.04.2018).
- 13. Georgiev N. Knowledge management system for improvement of qoality of railway transport service //
- Machenes, technologies, materials. ISSN 1313-0226.ISSUE 4/2013. P. 3-6.
- 14. Галабурда В.Г. Комплексная оценка качества транспортного обслуживания // Финансовые результаты управления качеством транспортного обслуживания: сб. науч. тр. Москва, 2017. С. 14–22.

References

- 1. Efremov I. S., Kobozev V. M., Yudin V.A. *Teoriya gorodskih passazhirskih perevozok* [Theory of urban passenger transportation]. Available at: http://padaread.com/?book=108241 (accessed 24 May 2018).
- 2. Spirin I.V. *Perevozki passazhirov gorodskim transportom* [Transportation of passengers by urban public transport]. Moscow: Akademkniga Publ., 2004, 413 p. (In Russian).
- 3. Artynov A.P., Skaletsky V.V. Avtomatizaciya processov planirovaniya i upravleniya transportnymi sistemami [Automation of transport system planning and management processes]. Moscow: Science Publ., 1981, 280 p. (In Russian).
- 4. Fadeev A.I., Kovalev V.A., Fomin E.V. Public transport system parameter normalization. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* [Proceedings of Irkutsk state technical University], 2014, no. 12, pp.179–183.(In Russian).
- 5. Fadeev A.I., Fomin E.V. Problem-solving methods for determining optimal structure of municipal passenger transport fleet. *Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta* [Proceedings of Irkutsk state technical University], 2018, no.1, pp. 218–227.https://doi.org/10.21285/1814-3520-2018-1-218-227. (In Russian).
- 6. Yakunin N. In. *Metodologiy povysheniya kachestva perevozok passazhirov obshchestvennym avtomobil'nym transportom* [Methodology to improve the quality of passenger transportations by public motor transport]. Available at: http://www.dslib.net/remont-transporta/metodologija-povyshenija-kachestva-perevozok-passazhirov-obwestvennym-avtomobilnym.html(accessed 24 May 2018).
- 7. Manaev K.I. Obosnovanie racional'noj struktury avtotransportno-kontejnernogo parka dlya sbora I vyvoza tvyordyh bytovyh othodov [Substantiation of rational structure of motor transport-but-container Park for collection and removal of municipal solid waste]. Available

Критерии авторства

Фадеев А.И., Фомин Е.В. заявляют о равном участии в получении и оформлении научных результатов и в равной мере несут ответственность за плагиат.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

- at:http://net.knigi-x.ru/24tehnicheskie/699740-1-obosno-vanie-racionalnoy-strukturi-avtotransportno-konteyn-ernogo-parka-dlya-sbora-vivoza-tverdih.php(accessed 14 December 2018).
- 8. Nosov A.L. Indicators of passenger transport service quality assessment. "Concept". 2016, no. 12. URL: http://e-koncept.ru/2016/16269.htm Oh (accessed 24 May 2018).
- 9. Dryuchin D.A., Maiorov M.A. Main directions to improve the quality of population transport servicing by municipal passenger transport on regular routes. *Vestnik Orenburgskogo gosudarstvennogo universiteta* [Vestnik of Orenburg State University], 2015,no. 4 (179),pp.30–36.(In Russian).
- 10. Yakunina N.V., Yakunin N.N. *Metodologiya povysheniya kachestva perevozok passazhirov obshchestvennym avtomobil'nym transportom* [Methodology for improving the quality of passenger transportation by public motor transport]. Orenburg: OOO IPK "Universitet", 2013, 289. (In Russian).
- 11. The International Association of Public Transport (UITP). URL: http://www.uitp.org (accessed 1 April 2018).
- 12. TRB Highway Capacity and Quality of service Committee. URL: http://sites.kittelson.com/HCQS (accessed 1 April 2018).
- 13. Georgiev N. Knowledge management system for improvement of quality of railway transport service. Machenes, technologies, materials. ISSN 1313-0226. ISSUE 4/2013, pp. 3–6.
- 14. Galaburda V.G. Kompleksnaya ocenka kachestva transportnogo obsluzhivaniya [Complex estimation of transport service quality]. Sbornik nauchnyh trudov "Finansovye rezul'taty upravleniya kachestvom transportnogo obsluzhivaniya" [Collection of scientific articles "Financial results of transport service quality management"]. Moscow, 2017, pp.14–22. (In Russian).

Authorship criteria

Fadeev A. I., Fomin E.V. declare equal participation in obtaining and formalization of the scientific results and bear equal responsibility for plagiarism.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Для авторов

Уважаемые коллеги!

Мы приглашаем Вас к участию в нашем журнале в качестве авторов, рекламодателей и читателей и сообщаем требования к статьям, принимаемым к публикации

I. Статья представляется **в электронном и распечатанном видах**. Рекомендуемый объем статьи не менее 10 000 знаков.

К статье прилагаются:

- 1. Экспертное заключение.
- 2. Название рубрики, в которой должна быть размещена Ваша статья; УДК; название статьи; реферат (аннотация), количество слов в реферате не менее 200; ключевые слова (4-5); сведения об авторах: название учреждения, его адрес; фамилия, имя, отчество (полностью); ученая степень; звание и должность; контактный телефон и e-mail (вся информация предоставляется одним файлом).
- 3. Статья должна иметь личную подпись автора; на статьях адъюнктов и аспирантов должна стоять также подпись научного руководителя.
- II. Текст статьи, сведения об авторах, реферат, ключевые слова, адрес учреждения, контактный телефон и E-mail должны быть также представлены по электронной почте: vestnik@istu.edu в виде файла с расширением *.DOC документа, построенного средствами Microsoft Word 97 или последующих версий.

При наборе статьи в Microsoft Word рекомендуются следующие установки:

- 1) параметры **страницы** и абзаца: отступы сверху и снизу **2 см**; слева и справа **2 см**; **табуляция 2 см**; ориентация книжная;
- 2) шрифт **Times New Roman**, размер **12**, межстрочный интервал одинарный, перенос слов автоматический;
- 3) при вставке формул использовать **Microsoft Equation 3** при установках: элементы формулы выполняются **курсивом**; для греческих букв и символов назначать шрифт **Symbol**, для остальных элементов **Times New Roman**. Размер символов: обычный 12 пт, крупный индекс 7 пт, мелкий индекс 5 пт, крупный символ 18 пт, мелкий символ 12 пт. Все экспликации элементов формул необходимо также выполнять в виде формул:
- 4) рисунки, вставленные в текст, должны быть выполнены с разрешением 300 dpi, B&W для черно-белых иллюстраций, Grayscale для полутонов, максимальный размер рисунка с надписью: ширина 150 мм, высота 245 мм и представлены в виде файла с расширением *.BMP, *.TIFF, *.JPG, должны допускать перемещение в тексте и возможность изменения размеров. Схемы, графики выполняются во встроенной программе MS Word или в MS Excel, с приложением файлов (представляемые иллюстрации должны быть четкими и ясными во всех элементах);
- 5) библиографические ссылки должны быть оформлены в соответствии с ГОСТ Р7.05 2008.

Внимание! Публикация статьи является бесплатной.

Стоимость журнала – 500 руб. (без стоимости почтовых расходов).

«Вестник ИрГТУ» включен в Перечень ведущих научных журналов и изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук, в международный каталог периодических изданий «UlrichsPeriodicals Directory», EBSCO, в Научную электронную библиотеку (eLIBRARY.RU), представлены в Научной электронной библиотеке «КиберЛенинка» (СҮВЕRLENINKA), рассылается в Российскую книжную палату, ВИНИТИ РАН.

Статьи, опубликованные в журнале «Вестник ИрГТУ», реферируются и рецензируются. Редакция оставляет за собой право отклонять статьи, не отвечающие указанным требованиям.

По вопросам публикации статей обращаться: 664074, г. Иркутск, ул. Лермонтова, 83, ФГБОУ ВО «Иркутский национальный исследовательский технический университет», Д-215.

Телефон: **(3952) 40-57-56** – Привалова Галина Петровна, ответственный за выпуск, **(3952) 40-58-57.**

Факс: (3952) 405-100, e-mail: pgp@istu.edu

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВЕСТНИК Иркутского Государственного Технического Университета

Научный журнал № 8 (139) 2018

Редактор Я.В. Макшанцева Художественный редактор Е.В. Хохрин Ответственный за выпуск Г.П. Привалова Перевод на английский язык В.В. Батицкой Верстка Н.П. Дзюндзя

Выход в свет 29.08.2018 г. Формат 60х90/8. Бумага офсетная. Печать трафаретная. Усл. печ. л. 25,5. Тираж 500 экз. Заказ 216. Поз. плана 3н.

Издание распространяется бесплатно

Иркутский национальный исследовательский технический университет 664074, г. Иркутск, ул. Лермонтова, 83

Отпечатано в типографии Издательства ФГБОУ ВО "Иркутский национальный исследовательский технический университет"

664074, г. Иркутск, ул. Лермонтова, 83

