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Abstract. This paper considers a stochastic modification of the Frank–Kamenetskiy problem of exothermic 
reaction dynamics in a plane-parallel layer with random temperature fluctuations at the outer boundary as a means 
of modeling the behavior of chemical reactors when operating under uncontrolled environment impacts. Unlike 
deterministic formulations, such approaches take into account the possibility of a thermal explosion whose proba-
bility depends on the noise intensity. Based on random process theory, the conditions for achieving ignition in the 
quasi-stationary approximation (i.e., when the thermal relaxation rate is much higher than the rate of temperature 
change) are estimated. The possibility of using such a formulation to obtain an approximate relationship between 
the parameters of the noise and the dynamic characteristics of ignition (expected thermal explosion time) is demon-
strated. The equation of non-stationary heat transfer in the reacting medium is solved numerically for a large num-
ber of random temperature trajectories at the boundary of the region of interest using a scheme combining explicit 
approximation of the nonlinear source with implicit approximation of the temperature field. By comparing the two 
approaches, the main regularities of non-stationary development of a thermal explosion in a stochastic environment 
can be approximated with good accuracy. Such a comparison relies on dependencies obtained when solving the 
quasi-stationary problem, taking into account a small correction for the critical temperature (marking the stability 
boundary for the stationary problem). Distributions of ignition characteristics (ignition temperature, maximum am-
bient temperature, and ignition time) and their dependence on input parameters (reactivity and noise intensity) are 
discussed.
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Задача теплового взрыва со стохастической границей: 
квазистационарное приближение и прямое численное 

моделирование
И.Г. Донской1

1Институт систем энергетики им. Л.А. Мелентьева СО РАН, Иркутск, Россия

Резюме. Цель работы состоит в численном исследовании стохастической модификации задачи Франка-Ка-
менецкого о развитии экзотермической реакции в плоскопараллельном слое со случайными флуктуациями 
температуры на внешней границе. Изменение температуры задается случайным процессом (броуновским 
движением). Такая задача может моделировать поведение некоторых типов химических реакторов, например, 
при их работе в условиях неуправляемых внешних воздействий. Важное отличие рассмотренной постановки 
от детерминированной заключается в том, что наличие шума допускает достижение критических условий при 
любых начальных условиях. Методы, используемые в работе, включают математическую теорию случайных 
процессов, а также численные методы решения стохастических дифференциальных уравнений. С помощью из-
вестных результатов теории случайных процессов оценены условия достижения зажигания в квазистационар-
ном приближении (т.е. когда скорость тепловой релаксации намного выше скорости изменения температуры).  
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Показано, что в такой постановке можно получить приближенную зависимость между параметрами случай-
ного блуждания и динамическими характеристиками зажигания (ожидаемым временем достижения условий 
теплового взрыва). Кроме этого, уравнение нестационарного теплопереноса в реагирующей среде решается 
численно для большого количества случайных траекторий температуры на границе области. Для этого исполь-
зуется комбинированная схема с явной аппроксимацией нелинейного источника и неявной аппроксимацией 
температурного поля. Сравнение двух подходов показало, что основные закономерности нестационарного раз-
вития теплового взрыва в стохастической среде могут быть с хорошей точностью приближены зависимостями, 
которые получаются из решения квазистационарной задачи с учетом небольшой корректировки для крити-
ческой температуры (отвечающей границе устойчивости для стационарной задачи). Получены распределения 
характеристик зажигания (температуры зажигания, максимальной температуры окружающей среды, времени 
зажигания) при разных значениях реакционной способности и интенсивности шума.

Ключевые слова: экзотермическая реакция, зажигание, стохастические дифференциальные уравнения, 
численное моделирование
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INTRODUCTION
Chemical reactions often occur under con-

ditions with dynamic variations of tempera-
ture, pressure, and concentrations. The aver-
age rate of a chemical reaction cannot always 
be estimated by the average values of the de-
termining parameters. In the simplest cases, 
variations in conditions can be represented as 
noise with given spectral characteristics. How-
ever, the influence of these characteristics on 
the reaction rate (in particular) and the stabil-
ity of the reaction system (in general) is an im-
portant task which requires special research 
for each individual set of chemical reactions 
and range of conditions.

Fluctuation processes are particularly im-
portant in relation to problems related to the 
thermal stability of exothermic chemical re-
actors and other heat-generating devices, for 
example, in the study of emergency modes of 
electrochemical elements and methods for 
preventing them [1, 2].

The classic Frank-Kamenetskiy problem 
involves determining the conditions for ther-
mal explosion (thermal ignition) in a sample 
with competition between heat release due 
to a chemical reaction and heat removal due 
to thermal conductivity. If we neglect reagent 
conversion, then the problem is reduced to 
solving the following equation [3]:

. (1)

Here, θ is the nondimensional tempera-
ture, t is the time (in Fourier number units),  

ξ is the spatial coordinate, Ar is the Arrhenius 
number (usually a small parameter), and Fk is 
Frank-Kamenetskiy number, which is a critical 
parameter of the problem. The initial condition 
is the uniform distribution of the temperature 
θ(0, ξ) = 0. The boundary conditions are as fol-
lows:

. (2)

If θb = 0, Ar = 0 and Bi =∞, then the critical 
value of Fk0 is about of 0.88. If Fk is greater 
than Fk0, then the problem (1)–(2) does not 
have a stationary solution, and the tempera-
ture tends to infinity (thermal explosion oc-
curs). Naturally, the unbound increase in the 
sample temperature is a result of an accepted 
approximation, namely, conversion neglect: in 
this case, we study ignition conditions, not the 
development of a process after ignition.

Often, ignition occurs in environments 
with stochastic perturbations of external pa-
rameters, for example, those associated with 
natural causes (noise, flow instability). In this 
regard, it is important to estimate the proba-
bility of ignition for a known range of such vari-
ations.

The influence of fluctuations on the de-
velopment of a thermal explosion in adiabat-
ic systems was investigated in [4–6], where 
the different nature of fluctuation dynamics 
in sub- and supercritical conditions was es-
tablished. Simpler models (for complex chem-
ical reactions under isothermal conditions) 
were considered in [7–9], including stochastic 
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chain termination reaction [10]. Small reacting 
systems were investigated in [11–13]. Linear 
heat losses (Semenov’s problem) were studied 
by the authors of [14, 15]; fluctuations of the 
mass transfer coefficient for a heterogeneous 
exothermic reaction – in [16].

As was pointed out in [17], there is mu-
tual influence of a chemical reaction and 
transport processes at the fluctuation level 
even despite the different tensor dimensions 
of the corresponding flows. In [18, 19], the 
mutual influence of a chemical reaction and 
transport coefficients was considered; in 
[20], the fluctuation-dissipation relations for 
mass transfer and chemical reactions were 
derived (in the absence of mass transfer, 
such relations are given in [21, 22]). Markov 
approximations for linear equations of chem-
ical kinetics were considered in [23, 24], and 
in [25, 26], numerical algorithms based on 
the Monte Carlo method were proposed for 
their implementation (including those based 
on splitting methods [27]). Bistable potentials 
for reaction-diffusion equations were used to 
study thermal stability in [28, 29]. The prob-
lem of thermal explosion with temperature 
fluctuations was considered in [30, 31]; the 
influence of reaction rate fluctuations on the 
stability of flat samples was investigated in 
[32] using the Lyapunov method.

In relation to the topic of the present work, 
the works of Derevich and coauthors are of 
interest, in which statistics of the behavior of 
reacting particles in stochastic media were 
studied [33, 34], as well as the influence of 
the stochastic distribution of active centers in 
porous catalytic granules [35] (a similar formu-
lation was also considered in [36] for simpler 
symmetry). In [37] a one-dimensional problem 
of a thermal explosion with temperature fluc-
tuations at the spherical symmetry boundary 
was considered.

In the present work, a non-stationary 
one-dimensional problem of heat conduction 
with a nonlinear source and stochastic fluctu-
ations in the ambient temperature is numeri-
cally solved for cylindrical symmetry. The sub-
ject of interest is the dependence of the ex-
pected ignition characteristics (time, ambient 
temperature, and heat fluxes on the particle 
surface) on the intensity of fluctuations, which 
are represented by white noise. We study the 
influence of temperature fluctuations on the 

thermal ignition conditions of a flat sample 
(layer). Unlike previous works, this article fo-
cuses on the environmental parameters that 
lead to thermal explosion and the patterns of 
the simulated ignition dynamics.

QUASI-STATIONARY THEORY
Quasi-stationary approximation is based 

on a time-scale splitting: thermal relaxation is 
considered fast enough to adapt to environ-
mental disturbances. This assumption is not 
valid for high-amplitude impacts and near-ex-
plosion conditions, but it is quite reasonable 
for subcritical modes with moderate noise 
intensity. Using the quasi-stationary approxi-
mation, we can solve the dynamic problem for 
boundary temperature only.

Let us consider the Frank-Kamenetskiy 
problem with temperature fluctuations at the 
outer boundary (in the environment). We will 
assume that these fluctuations follow a Wie-
ner process:

. (3)

Then, we can write the diffusion equation 
(Fokker-Planck equation) for the probability 
density function of the environmental tem-
perature:

.
(4)

We assume that the conditions in the sam-
ple are such that the Frank-Kamenetskiy num-
ber is below its critical value (Fk0 = 0.88). From 
dimensional analysis, it follows that the critical 
boundary temperature for the quasi-stationary 
problem can be found by the following formula:

(5)
.

From here, we obtain:

. (6)

If at the initial moment, the tempera-
ture at the boundary is zero, then the solu-
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tion to the diffusion equation (4) is the 
fundamental solution to the heat equation 
as long as the distribution is concentrat-
ed near zero (which results in Var[θb(t)] = 
σ2t). At later times, it is necessary to con-
sider that specific random trajectories do 
not have physical meaning after ignition 
conditions are reached. Therefore, let us 
change the boundary conditions and con-
sider the diffusion equation with an ab-
sorbing boundary:

. (7)

It can be shown that for the integral of P(t, 
θ) to be finite over the entire state space, it is 
also necessary that:

. (8)

We integrate equation (4) over the state 
space (possible boundary temperature val-
ues):

(9)

.

The resulting equation shows that the 
number of realizations corresponding to 
different random trajectories decreases in 
time due to absorption at the right boundary  
(i.e., systems that have reached a critical tem-
perature do not evolve further). At low critical 
temperatures, we can present the equation for 
the distribution function in difference form (we 
assume that most of the distribution is close 
to zero):

. (10)

Here  is the survival 

probability, i.e., the probability that the sys-
tem has not reached critical conditions for 
thermal ignition (has not drifted beyond the 
right boundary). Then we can introduce a 

characteristic non-dimensional diffusion pa-
rameter:

. (11)

This gives us an estimate of the half-life:

. (12)

According to this equation, as the critical 
temperature increases, the expected ignition 
time also increases (in this case, the depen-
dence t ~ θ2, which is expected for diffusion 
processes, is observed). With increasing noise 
intensity, the expected ignition time decreases 
[32], a similar dependence is found.

Fig. 1 presents the result of the numerical 
solution of the diffusion equation in a semi-in-
finite region with an absorbing boundary, 
namely, the dependence of the ignition proba-
bility on time. There is an exponential decrease 
in the survival probability Φsurv (correspond-
ingly, an increase in the ignition probability  
Φign = 1 – Φsurv); soon after this, the curve tends 
to zero (or, correspondingly, one) as t-1/2 (such 
a slowdown is associated with trajectories that 
move towards low temperatures and rarely re-
turn). The half-life appears to be quite close to 
the above estimate. The plotted markers are 
discussed below.

Upon closer examination, it turns out that 
the boundary condition in the form of an ab-
sorbing boundary is a fairly rough approxima-
tion. It is necessary to solve the heat trans-
fer equation for a stochastic reacting medi-
um in a nonstationary form. The stochastic 
equation for environmental temperature is 
complemented by the thermal conductivity 
equation in the medium. Then, the ignition 
conditions are determined not only by the 
possibility of achieving a critical environmen-
tal temperature but also by the propagation 
of thermal disturbances in the medium. As 
direct numerical modelling shows below, 
situations are possible when exceeding the 
critical temperature at the sample boundary 
does not lead to the development of a ther-
mal explosion in a stochastic environment. 
The stochastic dynamics of the environmen-
tal temperature lead, to the residence time 
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in the supercritical region possibly being too 
short for temperature disturbances to devel-
op. Thus, the only way to study the stochastic 
problem of thermal explosion is direct nu-
merical simulation.

DIRECT NUMERICAL SIMULATION
For calculations, we use the following 

semi-implicit difference scheme:

(13)
.

The boundary conditions for this system of 
difference equations are written as follows:

. (14)

We use the following parameter values for 
calculations: spatial grid step 2×10-3; time 
grid step 1×10-3 (adaptation of the grid step 
is needed, as a rule, only near the explosion 
time; in this work, a time grid step is con-
stant, so the ignition time is determined up 
to its value). Using explicit approximation for 
the heat source in (13), we obtain a system of 
linear equations that is solved by the tridiag-
onal matrix algorithm (the numerical solution 
is described in more detail in [36, 38]). The 

stochastic equation for the boundary tempera-
ture has the following difference approxima-
tion (Euler-Maruyama method [39]):

. (15)

Here, ε is a normally distributed random 
number with unit variance.

Let us consider ignition under conditions 
where the initial state and parameters of the 
problem at σ = 0 correspond to subcritical con-
ditions. As mentioned above, the critical num-
ber Fk0 is 0.88 for Bi = ∞ and Ar = 0. Under Bi 
= 1000 and Ar = 0.02, the critical number Fk0 
slightly increases to approximately 0.897 (a 
time period of approximately 80 Fourier num-
bers is considered). The value Fk = 0.8 was 
chosen as the deliberately subcritical mode. 
Numerical calculations show that at this Fk, a 
stationary solution is established with a max-
imum temperature of approximately 0.73. Ac-
cording to several papers [32, 33], the onset 
of a thermal explosion in a stochastic system 
is inevitable, although the expected ignition 
time increases sharply with distance from the 
stability limit [3]. For Fk = 0.8, the critical ig-
nition temperature is 0.118; the numerical 
calculation is shown in Fig. 2, confirming the 
validity of formula (6). The ignition criterion 
in the calculations is the achievement of a 
high temperature in the centre of the sample  
(θ(τign, 0) > 10).

Fig. 1. Solution of the diffusion equation with an absorbing boundary (the markers are the results of calculations using the 
Monte Carlo method with correction)
Рис. 1. Решение уравнения диффузии с поглощающей границей (маркеры – результаты расчетов с использованием 
метода Монте-Карло с поправкой)
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Note that even at a value of Fk above the 
critical value, there are random trajectories 
leading to the region of low temperatures, so 
the onset of a thermal explosion, in the gen-
eral case, is not guaranteed even for samples 
with high reactivity (this effect can be seen 
even for the quasi-stationary approximation in 
(Fig. 1). Calculations show that for Fk = 1, the 
probability of ignition after 40 temporal units 
is 0.87 (for Fk = 2, it is already 0.98 but still 
less than 1).

The overall calculation time for all the cas-
es is 40 temporal units (in this case, the time 
unit corresponds to the Fourier number). The 
ignition time, as mentioned above, increases 
sharply when approaching the critical value 
Fk, so calculating the exact limit is practically 
impossible. The graph in Fig. 3 shows that the 
ignition probability expectedly increases with 
the time span. The behaviours of the curves in 

Fig. 1 and 3a qualitatively coincide (up to the 
time scale).

We solve a system of equations with the ini-
tial condition θ(0, ξ) = 0 for different random 
trajectories θb(t) (a total of 1000 trajectories 
for each value of σ) and study the distribution 
of the resulting solutions. Note that the histo-
grams presented below contain only solutions 
with successful ignition. The probability of igni-
tion Φign, calculated as the ratio of the number 
of calculations with successful ignition to the 
total number of calculations, is shown in Fig. 3:  
this value does not exceed 0.87 for all consid-
ered parameter values. In this case, however, 
only the ignition probability in a given time in-
terval is considered: as the previous analysis 
shows, the ignition probability increases slowly 
over large periods of time. The equipment of 
multi-access center “High-temperature circuit” 
was used for computations.

Fig. 3. Ignition probability vs calculation time, Fk number and noise intensity σ
Рис. 3. Зависимость вероятности воспламенения от времени расчета, числа Fk и шага случайного блуждания σ
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Fig. 2. Temperature dynamics in the centre of the sample for a deterministic problem for Fk = 0.8 and different values of the 
environment temperature
Рис. 2. Динамика температуры в центре образца для детерминированной задачи при Fk = 0,8 и при различных значениях 
температуры окружающей среды
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CALCULATION RESULTS AND DISCUSSION
The results are presented in two types of 

figures: histograms showing the distributions 
from computational experiments (probability 
is interpreted as relative frequency, Figs. 4–9); 
and moments of these distributions (mean 
and variance, Figs. 10 and 11). 

As the step of the noise intensity σ increases, 
the variance of the temperature at which ignition 
occurs also increases (Fig. 4). The maximum of 
the distributions in all the cases is shifted toward 
positive values of the dimensionless tempera-
ture. At σ = 0.1, the distribution is concentrated 
near θign = 0, while at σ > 0.7, the maximum of 
the distribution is at θign > 1$. Since the critical 

temperature in this case is low, ignition requires 
that the environment temperature remained in 
the region θb > θb

* long enough for the thermal 
disturbance to propagate throughout the sam-
ple. With a small σ, the θb values stay longer with-
in the ignition range after entering it, while with 
larger variances, the temperature will change 
more significantly. With increasing σ, the fraction 
of solutions with successful ignition increases 
when the environmental temperature is lower 
than the critical value. That is, if “no return” con-
ditions are achieved (i.e., thermal disturbances 
developed enough), then the environmental tem-
perature decrease caused by the noise cannot 
prevent ignition. Fig. 5 shows the values of the 

Fig. 4. Distribution of the environment temperature at the ignition moment for Fk = 0.8 and different σ values
Рис. 4. Распределение температуры окружающей среды в момент воспламенения при Fk = 0,8 и различных значениях σ

Fig. 5. Distribution of the maximum environment temperature achieved during random walks for Fk = 0.8 and different σ values
Рис. 5. Распределение максимальной температуры окружающей среды, достигнутой при случайных блужданиях при  
Fk = 0,8 и различных значениях σ
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highest achieved environment temperature (for 
successful ignition solutions). The higher the av-
erage environmental temperature, the lower the 
ignition time, as shown in Fig. 6. The fraction of 
solutions with early ignition increases with noise 
intensity.

Further, calculations were carried out for a 
constant σ with varying Fk. The ignition char-
acteristics were the same: the environmental 
temperature at which ignition occurred, the 
highest environment temperature reached be-
fore ignition, and the ignition time delay. In con-
trast to varying the noise intensity, varying the 
value of Fk  has little effect on the shape of the 
ignition temperature distribution. As shown in 
Fig. 7, an increase in reactivity leads to a shift 

in the distribution toward lower temperatures 
(following eq. (6)). That is, after reaching the 
ignition limits, the environment temperature 
changes similarly for all values of Fk, which re-
sults from the randomness of the walk.

Fig. 8 shows similar shifts in the distribution 
for the maximum temperature. The left shoulder 
of the distribution decays more sharply (since 
ignition is less likely at low temperatures). The 
right shoulder of the distribution follows the 
same pattern as in the previous figure.

The higher the Fk value, the lower the igni-
tion temperature and, therefore, the less the av-
erage time needed to reach a critical tempera-
ture. The distribution of ignition times is then 
concentrated in the region of small values.

Fig. 6. Distribution of ignition time for Fk = 0.8 and different σ values
Рис. 6. Распределение времени зажигания для Fk = 0,8 и различных значений σ

Fig. 7. Distribution at the environment temperature at the ignition moment for σ = 1 and different Fk values
Рис. 7. Распределение температуры окружающей среды в момент воспламенения при σ = 1 и различных значениях Fk
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Fig. 8. Distribution of the maximum environment  temperature achieved during random walks for σ = 1 and different Fk values
Рис. 8. Распределение максимальной температуры окружающей среды, достигнутой при случайных блужданиях, для σ = 1  
и для различных значений Fk

Fig. 9. Distribution of ignition times for σ = 1 and different Fk values
Рис. 9. Распределение времени зажигания для σ = 1 и для различных значений Fk

Figs. 10 and 11 show the changes in mo-
ments. As indicated earlier, with increasing 
noise intensity, the variance of the character-
istic temperature increases, and this growth 
is approximately linear. With a constant noise 
intensity, the distribution temperature width 
changes slightly, while the dependences of 
critical temperatures on variance follow qual-
itatively eq. (6) but with a shift relative to the 
y-axis (1–2 temperature units). The variance 
of the ignition temperature distribution for all 
the cases is greater than the variance of the 
maximum temperature distribution. This dif-
ference may be explained by the difference 
in the time scales of heating and ignition. The 

reaction rate is approximately constant along 
the curves in the graphs; therefore, for igni-
tion to occur before the environmental tem-
perature drops and the sample cools, a higher 
temperature is needed. The average reaction 
rate increases by 5–10 times compared to the 
reaction rate for quasi-stationary conditions, 
which ensures that the sample ignites within 
the thermal relaxation time.

Average ignition time decreases almost 
monotonically with an increase of reactivity 
and noise intensity (Fig. 11). Its variance does 
not significantly change. It should be noted 
that the values were calculated based on suc-
cessful ignition cases only.  
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Thus, the influence of non-stationarity can 
be reduced, with some degree of approxima-
tion, to a change in the critical temperature. 
Indeed, the curve in Fig. 3 a, reduced to the 
critical temperature from eq. (6) with a con-
stant additive term of 1.2 temperature units 
(the average difference for Fig. 10 b), agrees 
quite well with the results of the quasi-station-
ary analysis (4)–(8): this comparison is pre-
sented in Fig. 1 with circles.

The main result is the dependence of ex-
pected ignition time on reaction conditions: 
this dependence can be used for the control of 
reactive systems in stochastic environments 
(for example, to detect runaway or to select a 
method of extinguishing). This kind of problem 

is of interest in energy storage systems design, 
taking into account fire safety issues. Other 
problems are also to be studied, including op-
timal control, collective effects in connected 
heat networks, the “inverse” problem of ensur-
ing stable combustion, etc.

CONCLUSION
The paper shows that the development of a 

thermal explosion in a stochastic environment 
differs significantly from the predictions of 
classical theory. A thermal explosion can occur 
for arbitrarily low levels of reactivity because 
there is a nonzero probability of reaching an 
arbitrarily high ambient temperature; on the 
other hand, even if a reactivity is higher than 

Fig. 10. Average values and variances of ignition temperature from the maximum temperature
Рис. 10. Средние значения и отклонения температуры воспламенения от максимальной температуры

Fig. 11. Average values and variances of ignition time values when changing parameters σ and Fk
Рис. 11. Средние значения и отклонения значений времени зажигания при изменении параметров σ и Fk
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the critical value, the onset of a thermal explo-
sion is not guaranteed since there is a sym-
metric probability of achieving an arbitrarily 
low temperature.

Calculations carried out using the Monte 
Carlo method make it possible to estimate the 
ignition probability depending on the parame-
ters of the problem (reactivity, noise intensity, 
observation time). As the noise intensity in-
creases, the width of the characteristic tem-
perature distribution increases; with increas-

ing reactivity, the variance in the characteris-
tic temperatures practically does not change, 
while the average values change qualitatively 
in a way expected from quasi-stationary the-
ory. The average ignition time decreases with 
increasing noise intensity and reactivity; the 
variance in the ignition time distribution is 
slightly reduced.

The results obtained can be applied to the 
analysis of critical phenomena in stochastic 
media.
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