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Резюме. Цель – рассмотреть механизмы образования дефектов пенополиуретановой изоляции, используе-
мой в трубопроводах, в частности, для энергетики и централизованного теплоснабжения. Объектом исследова-
ния является пенополиуретановая изоляция, находящаяся между сталью и полиэтиленом. Численный термоме-
ханический анализ был проведен с использованием программного обеспечения ANSYS на П-образном участке 
трубы с пенополиуретановой изоляцией для моделирования условий эксплуатации при температуре теплоно-
сителя 130°C с различной температурой окружающей среды от -20 до +20°C с шагом в 5°C. Рассмотрены 
различные причины возникновения дефектов в изоляции, включая технологические факторы при производстве 
(например, неравномерное нанесение, неправильная температура вспенивания, загрязнение влагой), меха-
нические нагрузки (удары, вибрации) и термические напряжения. Описан процесс разрушения пенополиуре-
тана, включающий конденсацию, коррозию и химический распад. В ходе проведенных исследований установ-
лено, что значительные концентрации напряжений возникают в местах поворота труб с пенополиуретановой 
изоляцией. Показано, что максимальное напряжение фон Мизеса составляет 0,45678 МПа при температуре 
окружающей среды -20°C (с разницей температуры теплоносителя и окружающей среды 150°C). Это близко к 
пределу прочности пенополиуретана, что при циклических процессах сжатия и расширения может привести к 
возникновению дефектов с последующей деградацией изоляционного слоя. Таким образом, показано, что тер-
мические нагрузки, наряду с дефектами производства и механическими воздействиями, являются основными 
причинами возникновения дефектов в пенополиуретановой изоляции (таких как трещины, расслоения, устало-
сти), которые нарушают структурную целостность и тепловые характеристики труб с полиуретановой изоляцией. 

Ключевые слова: пенополиуретан, термические напряжения, механические волны, ANSYS, диагностика 
трубопроводов, коэффициент теплового расширения, деформации

Финансирование. Данная работа выполнена в рамках гранта РНФ № 24-29-20061, https://rscf.ru/
project/24-29-20061/. Авторы благодарят РНФ за поддержку настоящих исследований.

Для цитирования: Газизуллин И.М., Дмитриев А.В., Русаков Г.Д., Бадретдинова Г.Р. Комплексное исследова-
ние причин разрушения пенополиуретановой изоляции в системах теплоснабжения // iPolytech Journal. 2025. 
Т. 29. № 4. С. 502–512. https://doi.org/10.21285/1814-3520-2025-4-502-512. EDN: JFTCLA.

MECHANICAL ENGINEERING
Original article

Polyurethane foam insulation: Causes of failure in district  
heating systems

Il’giz M. Gazizullin1 , Andrei V. Dmitriev2, Grigorii D. Rusakov3,  
Guzel R. Badretdinova4

1-4Kazan State Power Engineering University, Kazan, Russia

Abstract. This study investigates the mechanisms of defect formation in polyurethane foam (PUF) insulation 
used in pipelines for energy and central heating applications. The research focuses on PUF insulation placed 
between a steel pipe and a polyethylene casing. A numerical thermomechanical analysis was performed us-
ing ANSYS software on a U-shaped section of an insulated pipe to simulate the operational conditions with a 
heat-transfer fluid temperature of 130°C and ambient temperatures varying from –20°C to +20°C in 5°C incre-
ments. Various causes of insulation defects were examined, including manufacturing factors (e.g., uneven appli-
cation, incorrect foaming temperature, and moisture contamination), mechanical loads (impact and vibration), 
and thermal stress. The PUF failure process, which involves condensation, corrosion, and chemical degradation, 
is described. The investigation established that significant stress concentrations occur at the bends of pipes 
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covered with PUF insulation. The maximum von Mises stress was determined to be 0.45678 MPa at an ambient 
temperature of –20°C with a temperature differential of 150°C between the fluid and environment. This value 
approaches the ultimate strength of the polyurethane foam, indicating that cyclic compression and expansion 
processes can initiate defects and lead to subsequent degradation of the insulating layer. Thus, the study demon-
strates that thermal loads, along with manufacturing defects and mechanical impacts, are the primary factors 
in the formation of defects in PUF, such as cracks, delamination, and fatigue, which compromise the structural 
integrity and thermal performance of insulated pipes. 

Keywords: polyurethane foam, thermal stresses, mechanical waves, ANSYS, diagnostics of pipelines, coefficient 
of thermal expansion, deformations
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ВВЕДЕНИЕ
Изучение механизмов формирования и 

последствий дефектов в трубах с пенополиу-
ретановой (ППУ) изоляцией является одной 
из ключевых задач в области инженерной 
безопасности, экологии и энергоэффектив-
ности. В энергетике и нефтегазовой отрасли 
трубопроводы с ППУ изоляцией используются 
для транспортировки высокотемпературных и 
высоконапорных сред (рис. 1). Популярность 
труб с ППУ изоляцией обусловлена хорошими 
теплоизоляционными свойствами пенополиу-
ретана, его теплопроводность не превышает 
0,03 Вт/(м·К). 

Это самый низкий показатель среди 
остальных материалов, применяемых для 
утепления трубопроводов.

Дефекты в изоляции могут привести к утеч-
кам нефтепродуктов, химических веществ 

или тепловой энергии, что негативно влияет 
на экосистемы. Например, разрывы трубо-
проводов с нефтью в экологически уязвимых 
регионах (как Арктика) или в охраняемых 
природных зонах могут вызвать масштабные 
аварии. Также повреждения ППУ слоя увели-
чивают теплопотери, что требует дополнитель-
ного потребления энергоресурсов.

Средние ежегодные потери от теплопо-
терь в трубопроводах с дефектами в России6 
оцениваются в 10–15% при норме в 5–7% 
[1]. Дефекты, такие как пустоты и трещины, 
создают области с повышенной теплопро-
водностью, так как воздух внутри пустот об-
ладает более высокой теплопроводностью, 
чем ППУ [2].

Процесс разрушения труб с ППУ изоля-
цией можно описать следующим образом. 
Когда температура внешней поверхности 

5Gutierrez L.D. A Circular economy approach to multifunctional sandwich structures: polymeric foams for district heating pre-
insulated pipes: thesis. Hamburg: HafenCity Universität Hamburg, 2022. 218 р. https://doi.org/10.34712/142.35
6Кузник И.В. Российское теплоснабжение. Учет и эксплуатация: эссе. 2-е изд., перераб. и доп. М.: МЭИ, 2006. 190 с.

Рис. 1. Наиболее распространенные теплоизолированные трубы с пенополиуретановой изоляцией5

Fig. 1. The most common thermally insulated pipes with polyurethane foam insulation5
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металлической трубы падает ниже точки 
росы окружающей среды, начинается про-
цесс конденсации водяного пара. Дефекты в 
ППУ слое ускоряют этот процесс – пустоты и 
трещины создают каналы для миграции во-
дяного пара из окружающей среды к метал-
лической трубе; конденсат скапливается на 
поверхности металла, особенно в областях 
с дефектами, где теплопередача наиболее 
интенсивна. Далее конденсат, содержащий 
примеси в виде солей и кислот из окружа-
ющей среды, вызывает электрохимическую 
коррозию металлической трубы, железо вза-
имодействует с кислородом и водой, образуя 
ржавчину [3–5].

Дефекты в ППУ слое образуются под воз-
действием следующих факторов:

– технологических (неравномерное на-
несение ППУ, нарушение температурно-вре-
менных режимов вспенивания, влажность 
компонентов); 

– механических нагрузок (внешние уда-
ры, вибрации, внутреннее давление);

– термических напряжений (перепады 
температур между слоями).

Вспенивание полиуретана происходит в 
результате химической реакции, одновре-
менно протекающей при смешивании изо-
цианата, полиола и воды. Изоцианат вступает 
в реакцию с водой или с влагой окружающей 
среды, образуя карбаминовую кислоту, кото-
рая затем разлагается на CO2 и амины [6]. 
Параллельно изоцианаты и полиолы вступа-
ют в реакцию с образованием полиуретана. 
Образующийся газ CO2 превращает полиуре-
тан в пену [4]. В случае если ППУ нанесен 
неравномерно из-за неправильной подачи 
компонентов или некалиброванного обору-
дования, в отдельных зонах слоя возникает 
неравномерность плотности ППУ, например, 
плотность 40 кг/м3 в одной области и 80 кг/м3  
в другой [5].

Также ввиду неравномерности нанесе-
ния ППУ слоя могут образоваться незапол-
ненные участки. В зонах с низкой плотностью 
модуль Юнга ППУ снижается до E ≈ 0,01 ГПа, 
что может вызывать локальные деформации 
при термических расширениях и трещины 
на границе раздела «более плотный ППУ – 
менее плотный ППУ» [7].

Немаловажным фактором является влаж-
ность компонентов заливки. Излишняя вода 
провоцирует чрезмерное образование CO2, 

что приводит к возникновению крупных пор 
и пустот, а также нестабильности в ячеистой 
структуре [8]:

NCO+H2O ⇾ NH2 + CO2.

Механические нагрузки, такие как внеш-
ние удары, вибрации, внутреннее давление, 
возникают при кратковременных, но интен-
сивных механических воздействиях на тру-
бу, например, удар вызывает резкое сжатие 
или растяжение ППУ слоя5 [9].

МЕТОДЫ И МАТЕРИАЛЫ
Напряжения, возникающие в результа-

те механических повреждений, можно оце-
нить через уравнение упругости. Общий вид 
уравнения напряжений можно записать в 
виде закона Гука. Так, для пенополиуретана 
в изотропном виде уравнение выглядит сле-
дующим образом:

	 ij ijkl klCσ = ε ,	 (1)

где σij – тензор напряжений, МПа; εkl – тензор 
деформаций, МПа; Cijkl – тензор жесткости 
ППУ упрощается до параметра модуля Юнга, 
МПа.

График зависимости напряжений до мо-
мента достижения предела прочности от 
деформаций для ППУ различной плотности 
приведен на рис. 3. Значения Модуля упру-
гости и пределов прочности (табл. 1) для раз-
личных ППУ приблизительно равны нижней 
границе в соответствии с данными из спра-
вочной литературы [10].

Приведенные значения являются при-
близительными, точные значения пределов 
прочности в значительной степени зависят 
от конкретного химического состава, про-
изводственного процесса − заготовки, рас-
пыления, формования и структуры ячеек  
[11, 12]. 

Ниже приведены приблизительные дан-
ные для жестких пенополиуретанов с закры-
тыми порами. Для более точных расчетов их 
необходимо сверять с техническим паспор-
том производителя [13].

Кроме того, одной из причин возникно-
вения дефектов является возникновение 
термических напряжений (рис. 4). Данные 
напряжения возникают в материалах при 
изменении их температуры ∆T, когда де-
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Рис. 2. Приблизительная зависимость тензора напряжений от тензора деформаций. Пенополиуретан плотностью, кг/м3: 
1 – 100; 2 – 80; 3 – 60; 4 – 40
Fig. 2. Approximate dependence of the stress tensor on the strain tensor. Polyurethane foam density, kg/m3: 1 – 100; 2 – 80; 
3 – 60; 4 – 40
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формация, вызванная тепловым расшире-
нием, ограничена другими материалами5,7 
[5, 7, 8, 14].

ППУ изоляция постоянно подвергается 
воздействию повышенных температур от го-
рячей стальной трубы, особенно внутренний 

7Oertel G., Abele L. Polyurethane handbook: chemistry, raw materials, processing, application, properties. Munich; New York: 
Hanser; Cincinnati: Hanser/Gardner, 1994. Режим доступа: https://archive.org/details/polyurethanehand0000unse/mode/2up 
(дата обращения: 15.02.2025).

Таблица 1. Пределы прочности для пенополиуретана различной плотности7

Table 1. Ultimate strength limits for polyurethane foam of various densities7

Плотность ППУ, кг/м3 Модуль Юнга, МПа Предел прочности на сжатие, МПа

40 20 0,2

60 40 0,5

80 80 1

100 120 1,5

Рис. 3. Деформация и сжатие оболочки (a) и разрушение пены на границе раздела пена-сталь (b) [15]
Fig. 3. Deformation and compression of the shell (a) and foam fracture at the foam-steel interface (b) [15]

a b
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слой ППУ, и циклическим изменениям тем-
пературы. В первую очередь разрушаются 
наименее стабильные уретановые связи в 
полимерной матрице. В результате возника-
ют снижение молекулярной массы полиме-
ра, возможное образование трещин, усадка, 
выделение летучих продуктов разложения, 
которые могут влиять на свойства замкнутых 
ячеек [16].

При изменении температуры ∆T матери-
ал стремится изменить свою длину по закону 
линейного теплового расширения:

	 ∆L = αL0∆T,	 (2)

где L0 – исходная длина, м; α – коэффициент 
теплового расширения, K-1.

Если деформация ограничена, например, 
другими слоями или фиксацией, возникают 
напряжения. Для одномерного случая про-
дольное расширение трубы определяется как

	  E Tσ = αD ,	 (3)

где E – модуль Юнга, МПа.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ
В рассматриваемом случае труба состо-

ит из трех слоев с разными коэффициентами 
теплового расширения, модулями Юнга и ко-
эффициентами Пуассона. Свойства материа-
лов приведены в табл. 2.

Определение относительных расширений 
для каждого слоя выявляется следующими 
формулами [17–19]:

	 ;	 (4)

	 ;	 (5)

	 .	 (6)

В качестве объекта был выбран П-образ-
ный пролет в сети труб с ППУ изоляцией. Гео-
метрические размеры трубы и пролета при-
ведены на рис. 5.

Циклические тепловые нагрузки могут 
привести к накоплению усталостных повреж-
дений, особенно в точках концентрации на-
пряжений, характерных для геометрии сое-
динения [9, 20].

Для моделирования температурных рас-
ширений необходимо задать граничные ус-
ловия. Температура внутренней поверхно-
сти равна температуре теплоносителя T = 
130°C10. Температура окружающей среды T 
в пределах от -20 до +20°C с шагом в 5°C. 

Методика моделирования в ANSYS  
(риc. 5–8) следующая: для начала проводит-
ся тепловой анализ Steady-State Thermal с 
учетом теплопередачи на внешней поверх-
ности, далее – термомеханический анализ 
Static Structural для расчета напряжений от 
теплового расширения.

Таблица 2. Свойства материалов трехслойной трубы с пенополиуретаном, параметры пенополиуретана, 
согласно ГОСТ 30732–20208 (EN 448:20169)
Table 2. Properties of three–layer polyurethane foam pipe materials, polyurethane foam parameters according to 
GOST 30732-20208 (EN 448:20169)
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Рис. 4. Геометрические параметры П-образного пролета: a – в разрезе; b – габаритные размеры
Fig. 4. Geometric parameters of the U-shaped span: a – in section; b – overall dimensions

a b

Рис. 5. Деформации П-образного пролета, возникающие в результате теплового расширения
Fig. 5. Deformations of the U-shaped span resulting from thermal expansion

Рис. 6. Относительные отклонения П-образного пролета, возникающие в результате теплового расширения
Fig. 6. Relative deviations of the U-shaped span resulting from thermal expansion
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Полученные распределения расшире-
ний и напряжений в слое пенополиурета-
на дают четкое представление об участках 
возможного расположения дефектов, таких 
как отслоения или трещины. Области с наи-
большим относительным расширением и 
возникающими напряжениями обладают 
наибольшей вероятностью возникновения 
отслоений и последующего разрушения как 
ППУ слоя, так и металлической оболочки.

ОБСУЖДЕНИЕ
Результаты моделирования показывают, что 

углы в трубопроводах с полиуретановой изоля-
цией являются областями повышенных напря-
жений (см. рис. 8) при тепловом расширении 
из-за сочетания осевых усилий. Важно отме-
тить, что полиуретановая изоляция испытывает 
значительное напряжение сдвига, поскольку 
она передает нагрузки между расширяющейся 
стальной трубой и внешней оболочкой.

Рис. 7. Исследование напряжения фон Мизеса при тепловых расширениях в ANSYS 
Fig. 7. Investigation of the von Mises stress during thermal expansion in ANSYS

Рис. 8. Приближенный вид, демонстрирующий распределение напряжений в углах П-образного пролета
Fig. 8. Approximate view showing stress distribution at the corners of the U-shaped span
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Проводя аналогичный анализ при различ-
ной температуре окружающей среды, были 
получены следующие данные о напряжени-
ях и относительных расширениях в ППУ слое 
(табл. 3).

Результаты численного моделирования 
указывают на линейность в зависимости от-
носительного расширения и создаваемого 
напряжения от температуры окружающей 
среды при постоянной температуре теплоно-
сителя.

ЗАКЛЮЧЕНИЕ
Технологические факторы в процессе про-

изводства могут привести к появлению таких 
дефектов, как пустоты, колебания плотности 
и участки с плохой адгезией. Механические 
нагрузки, включая удары при монтаже, а так-
же вибрации от работающего оборудования 

или внешних источников могут привести к 
образованию трещин, расслоению и уста-
лостных напряжений. Однако термомехани-
ческий анализ, проведенный с использова-
нием программного обеспечения ANSYS на 
типичном участке трубы П-образной формы, 
выявил критическую роль термических на-
пряжений.

Согласно полученным данным при ис-
следовании тепловых расширений, при 
относительном расширении ППУ слоя 
0,01142, максимальное напряжение, воз-
никающее в результате теплового расши-
рения при разности температур теплоноси-
теля и окружающей среды 150°C, состав-
ляет 0,45678 МПа, что близко к пределу 
прочности и при периодическом расшире-
нии и сжатии, и может привести к различ-
ным повреждениям.
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