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Abstract. This paper aims to establish a comprehensive photovoltaic power generation prediction model. By collecting
photovoltaic power generation data and weather data for a year, we analyzed the photovoltaic output characteristics in
different seasons and found that the output characteristics in different seasons are also different. This article uses three
neural network models, Long Short Term Memory Network, Recurrent Neural Network, and Dense Neural Network, to
analyze the output characteristics of different seasons. Training, prediction, and prediction error analysis found that different
models have different prediction accuracy in different seasons. Therefore, this paper proposes a weighted ensemble model
add weights model based on the Nelder-Mead method to train and predict different seasons respectively. By analyzing the
prediction error, the prediction accuracy needs to be better than a single model. We add noise to the data set to simulate
unstable lighting conditions such as rainy days, and train and predict the data set after adding noise. The prediction results
show that the comprehensive model has higher prediction accuracy than a single model in extreme weather. In order to
verify the reliability of the model, this article uses a sliding window to extract the confidence interval of the prediction results,
and uses the Bootstrap method to calculate the confidence interval. By analyzing and comparing each model’'s Average
Coverage, Root Mean Squared Length, and Mean Width, the prediction accuracy and reliability of add weights model are
better than those of a single model.
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OHEPTETUKA

HayuyHas ctatbs
YOK 621.311

OnTumusauma o6LeamHeHUA HEMPOHHbIX ceTen Ans
NPOrHO3MpoBaHUA (POTOINEKTPUYECKON IHEPTUM

CyH o', K.C. NMapuxap?, M.K. NaTxax®, A.H. Cugopos*~

"*Upkymekuli HauuoHanbHbIl uccriedosamenbeKuli mexHuYeckul yHugepcumem, 2. Mipkymck, Poccusi
*UHecmumym cucmem aHepeemuku um. J1.A. MeneHmbesa CO PAH, 2. Mpkymck, Poccusi
Z3MHdudickuli mexHonoaudeckuli uHemumym Pypku, 2. Pypku Ymmapanyarn, MHous

Pestome. Llenbio SBRsSETCA NpoBeAeHVEe NCCnedoBaHWii B 06nacTv NporHO3vpoBaHWs BbIPaboTKN COMHEYHBIX SMek-
TpocTaHuwii. B kayecTBe o6bekTa uccrnegoBaHus NpeanoxeHa aHcambneras HempoceTeBas MpPorHosHas mogens ADWM
Ha OCHOBE B3BELUEHHbIX HEWPOHHbIX CETEN: CeTy JONron KpaTkocpoyHow namsatn LSTM, pekyppeHTHON HEMPOHHON CETK
RNN v nonHocBsiHow HeipoHHo ceT DNN. [pu aToM Agns noucka onTrMarnbHbIX BECOB UCMOMb30BaH MeTon besyc-
NoBHOM onTuMu3aumn Hengepa-Muaa ons nonyyeHus nyyilei npegckasaternibHon ahekTUBHOCTY NPOrHO3HON MOZENM.
C uenbto Banuaaumm NpegnoXeHHoW NPOrHO3HOW MOZENW UCMONb30BaHbl peanbHble AaHHbIE O BbIpaboTKe COMHEYHbIX
3MeKTPOCTaHUMN Ha OCHOBE (POTOINEKTPUYECKMX MAHENEN U METEOPOsiornyeckne AaHHble U3 ABCTpanuu 3a nepvog —
OAVH rof. Ana nmmtaumum ycnoBuin HEYCTONYMBON HU3KON MHCOMSALMM MCNOb30BaHa ayrMeHTaumst AaHHbIx, JobaeneHne
Lwyma K Habopy AaHHbIX. AHanM3 NPOrHO3HLIX MOAENen Ha peanbHbiX BPEMEHHBIX psigax nokasarn, YTo B pa3Hble CE30HbI
KaK AaHHble BbIpaboTKK, Tak U Hanbonee 3HauMMble MPU3HAKKM CYLLECTBEHHO PasnUYaloTCs. YCTaHOBMEHO, YTO TOYHOCTb
MPOrHO3MPOBaHUS PasHbX HEMPOCETEBLIX MOZENEN B pasniuyHble CE30HbI MOXET CYLLECTBEHHO BapbupoBaThecs. Peaynb-
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TaTbl NPOrHO3MPOBAaHWS NOKa3bIBAIOT, YTO NPEANIOKEHHAS KOMMNMEKCHAs MOAENb UMeeT Bornee BbICOKYH TOYHOCTb NPOrHO-
3MPOBaHWS, YEM OTAENbHbIE MOAENMN B 3KCTPEMAaribHbIX MOTOAHbIX YCOBUSX. [ns NPOBEPKN HAAEeXHOCTY NPeasioKeHHO
MOAENM MCNomnb30BaHO CKOIMb3sLLEee OKHO AN U3BMEeYeHNs OBepUTENBHOrO MHTepBana u metoa Bootstrap ans pacyeta
[0BEPUTENBHOTO MHTepBana. TakuMm 06pa3oM, 3KCMePUMEHTArbHLIM MyTeM YCTAHOBMEHO, YTO TOMHOCTb U HAAEXHOCTb
MPOrHO3MPOBaHUS KOMNMEKCMPOBAHHOM NPOrHO3HOM HevipoceTeBon Mogen ADWM Beoiwe, Yem y TpaanUMOHHbIX HENpo-
ceTeBbIx Mogenen. NpoBedeHHble UccnenoBaHWs NO3BONAT 6onee aHHEKTUBHO UCMONb30BATh YIMEPOAHO-HENTPanbHbIe

MCTOYHUKM (POTOSNEKTPUHECKOW 3HEPTUM W NaHMPOBaTh paboTy SHEPrOCUCTEM C pacnpenerneHHON reHepaLyen.
Knroyeeble croea: NporHo3 MOLLHOCTU (hOTOIMEKTPUYECKMX CUCTEM, HEMPOCETH LOMTON KPaTKOCPOYHOW NamsiTy,
PEKYPPEHTHas HEeMPOCETb, NMOMHOCBS3HAs HelpoceTb, MeTod Henpepa-Muaa
®uHaHcuposaHue: PaboTa BbinonHeHa npu hyHAHCOBOW NoAaepke rpaHTa MrHWCTEPCTBA Hayku 1 BbicLlero obpa-

30BaHus PO (npoekt Ne 075-15-2022-1215).

Ana yumupoeaHus: Jto CyH, Mapuxap K.C., Matxak M.K., Cugopos [.H. Ontummsauus o6beanHEHNS HEMPOHHBIX
ceTenl ANns NPOrHo3vpoBaHKs (hoToanekTpuieckon aHeprum // iPolytech Journal. 2024. T. 28. Ne 1. C 111-123. (In Eng.).
https://doi.org/10.21285/1814-3520-2024-1-111-123. EDN: PHOEXF.

INTRODUCTION

As the global demand for renewable energy
continues to grow, photovoltaic energy has
emerged as one of the cleanest and most
sustainable energy sources [1]. However, the
characteristics of photovoltaic power generation,
such as weather changes and day-night cycles,
make its output highly unstable and seasonal,
posing challenges to the reliable operation and
energy management of the power system [2, 3].
Therefore, accurate prediction of photovoltaic
power becomes a crucial task aimed at maximizing
the efficiency, sustainability, and economy of the
power system [4]. In current research on PV
power forecasting, the prediction methods can be
categorized into three types: based on physical
models, based on statistical models, and based on
machine learning [5]. The physical model primarily
models the irradiance and photovoltaic inverter
based on the characteristics of photovoltaic power
generation and makes predictions using real-
time data. While the physical model can offer a
certain level of accuracy, the prediction system
is relatively complex [6]. The statistical model is
built on historical data and statistical analysis.
By observing and analyzing the time series
data of the photovoltaic system power output, a
statistical model has been developed to predict
future changes in power. Compared to physical
models, statistical models are less complex, but
the prediction results heavily rely on the quality of
historical data [7]. Machine learning models train
algorithms to identify patterns in data and then
utilize those patterns to make predictions. For
predicting PV power, machine learning models
can utilize various algorithms, including neural
networks, support vector machines, and decision
trees. These models are capable of adapting to
complex nonlinear relationships in order to better
capture the intricate changes in photovoltaic
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system power output [8]. In the field of photovoltaic
(PV) power forecasting, neural network models
have proven to be a powerful tool capable of
capturing complex nonlinear relationships and
temporal dependencies, thus performing well in
time series forecasting. However, a single neural
network model still faces several challenges, such
as model complexity, data diversity, overfitting, and
other issues. A single model may not effectively
adapt to the prediction requirements of various
climate types in different regions. In the paper [9],
the author utilizes the T-S (Takagi-Sugen) fuzzy
model and the deep belief network (DBN) for
making predictions. Finally, a genetic algorithm is
employed to optimize the model weights, resulting
in @ much smaller prediction error compared to that
of a single model. Paper [10] proposed a prediction
method based on long short term memory LSTM-
ATTENTION. Compared to a single LSTM, the
prediction accuracy has improved, but the model’s
generalization ability and stability have not been
verified. In the paper [11], the author employs a
fusion model of DCNN and LSTM neural network,
fully leveraging the data mining capabilities of
DCNN, and achieves promising results in short-
term photovoltaic power prediction. Paper [12]
uses backpropagation (BP) neural network to
assign weight coefficients to the gray model and
improve gray models.

In Paper [13], the author categorized the day-
ahead weather into different types by hour. They
combined this information with historical weather
forecast data, trained separate datasets for each
weather type, and divided the yearly data into four
seasons based on the seasons. For training and
prediction in each season, the author compared
the prediction results of four models such as
LSTMNN and recurrent neural network (RNN),
but did not assess the prediction performance
of different models across different seasons.

https://ipolytech.elpub.ru
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Although the prediction results of LSTMNN are
better than those of other models, the data used
for prediction are all from one season, which
limits the ability to verify the adaptability of the
model. In this paper, we divide the data into four
parts by season and use different models to train
and predict different seasons.

In the aforementioned papers, single and
combined neural networks were utilized to
construct models for prediction. This study
proposes an integrated model consisting of three
neural networks: LSTM (long short-term memory
network), RNN, and dense neural network
(DNN), to enhance the accuracy and reliability of
photovoltaic power prediction [14].

The main objective of this study is to develop
an ensemble method that combines multiple
neural network models to enhance PV power
predictions by fully leveraging the strengths of
each model. Specifically, we will explore various
types of neural network models, including LSTM,
RNN, and DNN. By assigning weights to each
model, we will then utilize the Nelder-Mead
method to optimize the weights and ultimately
achieve the optimal weighted model. In deep
learning prediction models, the selection of
hyperparameters significantly affects the accuracy
of the predictions. In current research, the

Training set

primary methods for hyperparameter optimization
include Bayesian optimization, random search
optimization, and other approaches. In the paper
[15], the author compared the performance of
various hyperparameter optimization methods in
neural networks and concluded that the Nelder-
Mead method yields better optimization results
and is simpler than Bayesian optimization. The
significance of this research lies in its potential to
assist power system operators, energy companies,
and government agencies in enhancing the
planning and management of photovoltaic energy
usage. This canleadtoareductioninthe challenges
posed by instability, as well as an improvement in
system reliability and sustainability. In addition, the
model exhibits good adaptability, allowing for the
adjustment of weights based on the model’s error
to minimize output prediction errors.

INTEGRATED MODEL FRAMEWORK

The structure of the photovoltaic power
prediction model in this article is shown Fig.1. The
combined model comprises four components: an
LSTM photovoltaic power prediction model, an
RNN photovoltaic power prediction model, a DNN
photovoltaic power prediction model, Nelder-
Mead weight optimization, and a combined
prediction model.

LSTM RNN

1 (2=

DNN

)
77

Nelder-Mead

Irmse,

Forecast result Forecast result

Forecast result

00

w I,WD‘

final prediction
result

Fig. 1. Framework diagram of the prediction model
Puc. 1. CmpykmypHasi cxema ModeJiu npo2HO3UPO8aHuUsi
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LONG SHORT TERM MEMORY

LSTM neural network model is an improved
RNN [16]. It uses memory cells to save
historical information at the previous moment,
and selectively remembers or forgets historical
information through forgetting gates, solving the
gradient explosion and gradient disappearance
problems of RNN shortcomings. So it is suitable
for long-term series forecasting problems. The
computing nodes of the LSTM model include
input gate, output gate, forget gate and memory
cell. Among them, the input, output, and forgetting
gates are the key to controlling information. The
forgetting gate is used to filter the information that
needs to be remembered, and the Cell is used to
update the current state. The *t of the input gate
controls the storage vector in the memory unit
after passing through the activation functions o
and tanh ,where x.is the photovoltaic powerinput
vector. The forgetting part of the memory unit is
determined by xt and the intermediate output
hy_1 of the previous moment. The intermediate
output h, is determined by the updated St, the
calculation method is as follows:

fe = o(Wr. [he—1, x¢] + Dp); (

ip = o(W. [he—q, x¢] + by); (
hy = o, - tanh (Cp): 3

0p = o(Wp. [he—y, xc] + bo); (

Et = tanh(W. [h¢—1, x¢] + be); (
Ce=ft C1+ir-C (6

There: yt is forget gate, ot and h t are output
gate, it and Ct are input gate, Ct is cell state.

output layer

Hidden layer

input layer ‘

m ' Ot
v . ‘ g
I \Y
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The predicted value of the final output layer is:
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Fig. 2. Long short term memory
Puc. 2. [Jonzas kpamkocpo4Hasi namsime

RECURRENT NEURAL NETWORK

Recurrent Neural Network is a type of neural
network designed to handle sequential data [17].
The device has memory capabiliies and can
capture temporal dependencies in sequence data.
The core concept of RNN is that when processing
the current input sample, the hidden state from the
previous time step can be utilized to incorporate
historical information into the model. The structure
of an RNN is relatively simple and mainly consists
of aninput layer, a hidden layer, and an output layer.
The input year receives sequence data, the hidden
layer calculates the current input and the hidden
state from the previous moment, and the output
layer produces the result. The advantage of RNN
is that it can handle variable-length sequences,
possesses memory capabilities, and can capture
long-term dependencies in sequence data.

Ot-1 Ot+1

Xt+1

Fig. 3. Recurrent neural network
Puc. 3. PekyppeHmHasi HelipoHHasi cemb
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Feedforward Neural Network
Hidden Layer

FelL

- Output Layer

Input Layer -

Fig. 4. Dense neural network
Puc. 4. lNonHocesi3Has HelipOHHas cemb

Here, X represents the input, which generates
S through a weight matrix U, and S generates O
through a weight matrix V. The key distinction
between RNN and traditional neural networks
is that each time the previous output is brought
to the next hidden layer and trained together.
U represents the weight matrix from the
input layer to the hidden layer, O is a vector
representing the value of the output layer, and V
is the weight matrix from the hidden layer to the
output layer.

hy = f(Uyt + Wse—1 + b); (7)
y: = softmax (Vs + ¢). (8)
DENSE NEURAL NETWORK

In this paper, we constructed a basic
feedforward neural network [18]. The model
includes a hidden layer with 64 neurons and a
ReLU activation function, as well as an output
layer without an activation function. The model
uses the Adam optimizer with a learning rate of
0,001 and the mean square error as the loss
function. The model is trained with 64 samples
per batch for 50 training epochs.

ADD WEIGHTS MODEL

In this paper, we employ the Nelder-Mead
method to optimize the weight of each model
based on the prediction error of a single model,
and subsequently integrate the weighted

prediction results into a single prediction outcome.
The process is as follows. First, we input the
processed dataset into three models for training
and prediction. We obtain the prediction error of
each model, randomly set a weight combination
W, and tune the model group based on the error
to obtain the best weight combination, W1. This
weight combination is then added to the prediction
result to obtain the best overall prediction result.
The Nelder-Mead method is a gradient-free
optimization algorithm that is appropriate for
situations where the objective function is not
smooth or differentiable. It finds the minimum
of a function by conducting a local search on
simplices in the search space.
The specific process is depicted in Fig. 5.

Y_plY_prY_pd

yes

W1,W2,w3

no

Wb1,Wb2Wb3

Fig. 5. Nelder-Mead
Puc. 5. Henbdep-Mud
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1 @n
Loss =~ i i = w1 Xy — )
— Wy X Ypri — W3 X Ypai) -

Here y; are the true values, w1, w,, w; are the
initial weight of each model, y,u, Vpri, ¥pa: are the
predicted values of each model.

RESEARCH METHODS

This paper analyzes the photovoltaic power
generation data from a power station in Australia
over the course of one year. Data is collected
every 5 minutes, including actual power, wind
speed, horizontal irradiance, diffuse irradiance,
temperature, and other environmental factors.
First, we preprocess the data by addressing
data outliers and missing values. We analyze
the data using a box plot and observe that the
output power is not 0 during non-sunrise hours

Normalized_horizontal radiation
Noemalized_Diffuse Horizontal Radiation -
Normalized_Temperature -
Normalized_WindSpeed

actual_power

Normalized_horizontal radiation

ISSN 2782-6341 (online)

(22-6 o'clock), and there is a very small output.
|deally, we set these nonzero values to 0. Since
there are still missing values in the data, this
article employs spline interpolation to fill in the
missing values. After completing the above
operations, we normalize and standardize the
data to make it suitable for model training,
therefore, the power in the prediction result
graphs in this paper is the normalized power.
Given the multitude of meteorological features,
it is necessary to engage in feature engineering
in order to perform correlation analysis on the
features, identify those with high correlation, and
analyze the heat map based on the correlation
analysis of the data. As shown in Fig. 6. It can be
observed that the correlation between radiance
and output power is 0,98, the correlation of
temperature is 0,46, and the correlation of wind
speed is 0,16.

Correlation Matrix

- 0.7

- 0.6

—0.5

-0.4

perature -
peed
actual_power

Normalized Tem
Normalized WindS

Noemalized_Diffuse Horizontal Radiation -

Fig. 6. Correlation heat map
Puc. 6. KoppensayuoHHass mennoeasi kapma
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In this paper, the two characteristics selected
for analysis are radiance and temperature. To
assess the performance of each model across
different seasons, we segmented the data into
four seasons—spring, summer, autumn, and
winter-based on the seasonal dates in Australia.
Subsequently, we conducted separate training
and testing for each model. This study aimed to
analyze the climate characteristics and output
power variations across different seasons. The
data for one year was divided into four seasons,
and output power curves and box plots were
created for each season. We can observe from
Fig. 7 that power fluctuates in different seasons.
The Fig. 7 shows that fluctuations are more
frequent in winter and summer, and relatively
stable in spring and autumn. Therefore, the
prediction accuracy of a single model will vary
for each season. This paper uses three common
neural network models as the base model, which
improves the adaptability of the model and can
play their best advantages in response to different
seasons.

Since each model exhibits varying prediction
performance across different seasons, we train
predictions for each season separately using
each model. We train the data of each season

Spring Power Variation

—— 5pring Power

Autumn Power Variation

—— Autumn Power

separately, and use the last day of each season
as the test set, 80% of the remaining data as
the training set, and 20% as the validation set.
By analyzing the output power characteristics of
each season, we can observe that the fluctuations
in output power vary across seasons due to
distinct seasonal characteristics. Therefore, if
only a single model is used for power prediction,
this will reduce the accuracy of the model’s
predictions.

HYPERPARAMETER OPTIMIZATION

In this paper, we use the random search
method to optimize the hyperparameters of the
three neural networks used in this paper. The
search space sets the learning rate to 0, 001.0,
01.0,1. Batch size is 32, 64, 128. Epochs are 50,
100, and 200. During the random search process,
we evaluate and compare the performance of
each set of hyperparameters based on the cross-
validation evaluation index RMSE, and finally
select the hyperparameter combination with
the best performance. This method can more
efficiently find the optimal solution in a large
number of hyperparameter combinations, and
has a certain degree of randomness, which helps
avoid falling into a local optimal solution.

Summer Power Variation

Summer Power

Date
Winter Power Variation

— Winter Power

Date

Fig. 7. Power fluctuations in different seasons
Puc. 7. KonebaHusi MoujHocmu e pa3Hble epemeHa 200a
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MODEL EVALUATIONAND RESULTANALYSIS

When evaluating and estimating prediction
error, the mean absolute error (MAE) and root
mean square error (RMSE) are used. Additionally,
the coefficient of determination (R-squared, R2)
is used to assess the accuracy of the model’s
predictions [19]. The calculation formula for each
evaluation index is as follows:

1\ 8
MAE=2) 1=l

n i

1\
RMSE = |~ E . 1(3’i -y
=

n A
100% i—Vi
MAPE = =222 |M|
n Yi
i=1

(10)

(11)

(12)

By weighting the model’s prediction results,
we obtain the evaluation criteria and prediction
map for each model. We select the preprocessed
summer data set for training and prediction. The
time point interval of the data set is 5 minutes.
From the final prediction result, as shownin Fig. 8,
it can be observed that the prediction accuracy
of the model improved after optimization was
added, surpassing that of the single model. This
study achieved improved prediction results by
incorporating weights from three simple models,
surpassing the performance of a single model.
The main advantage of this integrated model is
its ability to adjust the weights as the region and
environment change, resulting in higher prediction
accuracy. Compared with a single model, it
demonstrates better adaptability. Through
the prediction results, as shown in Table 1,
we observed that the LSTM model has the best
predictive accuracy among the single models.
After analyzing the weighted output prediction

ISSN 2782-6341 (online)

results, as shown in Table 2, we found that all
error indicators decreased. This indicates that
the model has advantages over a single model.

— True
— LSTM
—— RNN
—— DNN
final_pred

0.8

0.6

Power
o
+H

0.2 1

0.0

T T T T T T 7
0 250 500 750 1000 1250 1500
Time, min

Fig. 8. Forecast results
Puc. 8. Pesynbmamsbi npo2Ho3a

CONFIDENCE INTERVAL COMPARISON

In this paper, we calculated three confidence
interval indicators using the Bootstrap method:
average coverage, Root Mean Squared Length
(RMSL), and Mean Width [20]. Use a sliding time
window with a window size of 15 to calculate the
confidence intervals for various time periods. By
iterating through the sliding window, data within
each window is intercepted for prediction and
confidence interval calculation. And plotted the
confidence interval for each model, as shown in
Fig. 9-12.

Coverage =
= %Z?ﬂlndicator(Li <y, <U): (13)
MeanWidth = % WU =L (14)
1 n
RMSL = \/; 2, Ui=L)* . (1)

Table 1. Forecast errors of various models in different seasons
Tabnuua 1. OwmbkM NporHo3a pasnuyHbIX MOAENen B pasHble BpeMeHa roga

RMSE RNN LSTM DNN
spring 0.030859 0.032103 0.031261
summer 0.022935 0.020825 0.021334
autumn 0.020222 0.022085 0.021396
winter 0.019157 0.021151 0.019446
Table 2. Forecast results
Tabnuua 2. Pesynetathl NporHosa
Modal MAE RMSE MAPE
LSTM 0.01591 0.02549 11.18%
RNN 0.01859 0.03074 12.55%
DNN 0.02036 0.03423 13.88%
ADWM 0.00786 0.02307 8.38%
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There: U; is the upper bound of the i-th
sample, L; is the lower bound of the i-th sample,
Yiis the actual observed value.

From Fig. 9-12, we can see the confidence
intervals for each model. We assessed the
accuracy of the confidence intervals for each
model by calculating the average coverage. The
average coverage reflects the frequency with
which the actual observations fall within their
respective confidence intervals. A higher average
coverage indicates that the model’s uncertainty
estimation is more accurate and reliable. From
the calculation results, it is found that the average
coverage of the integrated model (ADWM) is 60%
higher than that of other models, which confirms
that the prediction accuracy of the integrated
model is superior to that of a single model. By
calculating the Root Mean Squared Length,
we can assess the length of the confidence
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Fig. 9. Results for long short term memory
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interval, which represents the level of uncertainty
surrounding the predicted results. The root mean
square length of ADWM is 0.157346, which is
smaller than that of a single model. This indicates
that the confidence interval of the ADWM model
is relatively compact, reflecting a more accurate
estimate of the predicted value. Through the
Mean Width measure, we analyze the average
uncertainty of the model across the entire forecast
horizon. The average width of ADWM is 0.148075,
which is smaller than that of a single model. A
model with a larger average width may indicate
higher prediction uncertainty during certain
periods or conditions. The reliability of the model
in this paper is confirmed by the accuracy of the
prediction results. The prediction accuracy of the
mixed model is higher. The prediction results after
adding weights (refer to Table 3) show that all
indicators outperform those of the single model.
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Table 3. Confidence interval
Tabnuua 3. [loBepuTenbHbIA MHTEpBan

LSTM DNN RNN ADWM
Average Coverage 0.57986 0.59375 0.55556 0.600694
Average Root Mean Squared Length 0.16396 0.16417 0.16513 0.157346
Average Mean Width 0.15408 0.15432 0.15533 0.148075
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Fig. 13. Rainy day forecast results: a— DNN-R; b — RNN-R; ¢ - LSTM-R; d - ADWM-R

Puc. 13. Pe3aynbmamsi npo2Ho3a doxdnueozo OHsi: a— DNN-R; b — RNN-R; ¢ - LSTM-R; d - ADWM-R

MODEL VALIDATION Fig. 13. From the prediction results (Table 4), we

To assess the model's stability in extreme can observe that in rainy weather, the prediction
rainy weather, we utilized a dataset specifically  error is larger. However, the model proposed in
focused on rainy weather conditions for training  this article demonstrates better prediction results
and testing. The prediction results are shown in  than a single model.

Table 4. Rainy weather forecast results
Tabnuua 4. Pe3ynbrathl NporHo3a oA NMBOM NOroAs

Modal MAE RMSE MAPE
LSTM 0.01836 0.02923 12.43%
RNN 0.02085 0.03188 13.40%
DNN 0.01801 0.02784 10.11%
ADWM 0.00771 0.02294 6.81%
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CONCLUSION

This paper proposes a neural network based
on three types of recurrent neural networks: LSTM,
RNN, and DNN. It performs weighted optimization
on the prediction results, utilizes the Nelder-Mead
method to optimize its weights, and outputs the
optimized prediction results. According to the
experimental data, we can conclude that the
integrated model proposed in this paper exhibits
higher prediction accuracy and better stability

compared to a single model. Due to the variability
of the weights, it adapts to the forecasting needs
of different regions in different seasons. This
article has confirmed that optimizing weights
using the Nelder-Mead method can improve the
prediction accuracy of the model and enhance
its stability. However, it does not delve into the
hyperparameter tuning method for a single model,
so the output results will be more accurate after
hyperparameter tuning.
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