ISSN 2782-6341 (online)

МАШИНОСТРОЕНИЕ

Научная статья УДК 539.3 https://doi.org/10.21285/1814-3520-2022-3-386-400

Трансформация геометрии образца для механических испытаний конструкционных материалов в FDM-структуре

Лев Игоревич Шеметов¹, Вера Борисовна Распопина^{2⊠}, Антон Сергеевич Чернышков³

¹⁻³Иркутский национальный исследовательский технический университет, г. Иркутск, Россия

Резюме. Цель - определить в первом приближении размер и форму образца для экспериментального исследования механических характеристик нитевидной структуры FDM-печати (FDM-структура) с невысоким процентом заполнения при центральном растяжении. На данном этапе разработки геометрии образца в качестве базовых были приняты размеры и форма образца, регламентированного ГОСТ 17370-2017 «Пластмассы ячеистые жесткие. Метод испытания на растяжение». В работе был задействован конечно-элементный анализ параметров напряженного состояния в автоматизированной среде, элементы теории подкрепленных оболочек и натурные испытания. Основанием для упрощения геометрии конечно-элементной модели исследуемых образцов стала теория подкрепленных оболочек. Конечно-элементный анализ выполнялся в линейной постановке, на результатах которого, в сочетании с анализом технологической модели проектируемого образца, принималось решение о трансформации геометрии образца. Для изготовления образцов применялся шаблон «линии» с ориентацией вдоль продольной оси образца. Результаты натурных испытаний являлись основанием для окончательного вывода об успешности внесенных изменений. Критерием успешности является разрушение FDM-образца в пределах рабочей части. В результате проделанной работы изменения претерпела как внешняя, так и внутренняя геометрия образца-прототипа. Это позволило сместить главный акцент в работе растягиваемого FDMобразца на его рабочую часть, скорректировать траекторию силовых потоков с поправкой на специфику FDMпечати. Натурные испытания FDM-образца с невысоким процентом заполнения шаблоном «линии» показали стабильно удовлетворительный результат: разрушения происходили в рабочей части испытываемых образцов. В ходе исследований была определена общая тенденция зависимости распределения силового потока по объему образца от сочетания траектории укладки нити печати с внешней и внутренней геометриями образца. В продолжении данных исследований планируется детальный анализ и формализация полученных результатов с распространением на разные шаблоны печати.

Ключевые слова: 3d-технологии, FDM-печать, FDM-образец, напряжения Мизеса, конечно-элементный анализ, рабочая часть образца

Для цитирования: Шеметов Л. И., Распопина В. Б., Чернышков А. С. Трансформация геометрии образца для механических испытаний конструкционных материалов в FDM-структуре // iPolytech Journal. 2022. Т. 26. № 3. C. 386–400. https://doi.org/10.21285/1814-3520-2022-3-386-400.

MECHANICAL ENGINEERING

Original article

Sample geometry transformation for mechanical tests of constructional materials in an FDM structure

Lev I. Shemetov¹, Vera B. Raspopina², Anton S. Chernyshkov³

© Шеметов Л. И., Распопина В. Б., Чернышков А. С., 2022

386 -

¹vbr2604@mail.ru. https://orcid.org/0000-0001-5955-6714

²vbr2604@mail.ru, https://orcid.org/0000-0001-8960-5644

³vbr2604@mail.ru, https://orcid.org/0000-0001-9128-0738

¹⁻³ Irkutsk National Research Technical University, Irkutsk, Russia

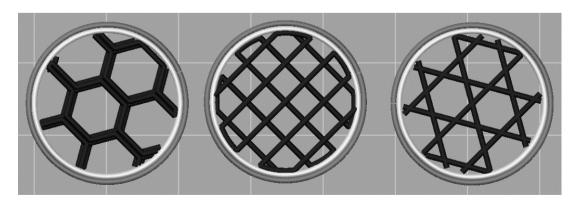
¹vbr2604@mail.ru, https://orcid.org/0000-0001-5955-6714

²vbr2604@mail.ru, https://orcid.org/0000-0001-8960-5644

³vbr2604@mail.ru, https://orcid.org/0000-0001-9128-0738

Abstract. The aim was to obtain a rough determination of the dimensions and shape of a sample for an experimental study of the mechanical characteristics of filamentary FDM-printing structures with a low filling at central tension. The sample geometry was designed based on the dimensions and shape provided in the GOST 17370-2017 "Cellular rigid plastics. Tension testing method". The research methods included the finite element analysis of stress state parameters in an automated environment, elements of the stiffened shell theory and experimental testing of samples. The theory of stiffened shells was used to simplify the geometry of the finite element model for the studied samples. Finite element analysis was carried out in a linear formulation and, based on the results of its combination with the analysis of the technological model of a designed sample, a decision on transforming the sample geometry was made. The samples were produced using a "line" template with an orientation along the longitudinal axis of the sample. According to the results of testing the samples, a conclusion about the success of implied transformation was made. The success criterion involves the destruction of an FDM sample within the limits of the working part. As a result, both external and internal geometries of the prototype sample were transformed. This allowed the main emphasis in the work of the stretchable FDM sample to be shifted to its working part and the trajectory of power flows to be adjusted according to the FDMprinting specifics. Experimental testing of FDM samples with a low "line" template filling showed a consistently satisfact ory result: fractures occurred in the working part of test samples. In the course of the studies, the general trend in the dependence of the force flow distribution over the sample volume on the combination of the printing thread trajectory with external and internal geometries of the sample was determined. Future work will focus on a more detailed analysis and formalisation of the obtained results with regard to various printing templates.

Keywords: 3d technologies, FDM printing, FDM sample, Mises stresses, finite element analysis, working part of the sample


For citation: Shemetov L. I., Raspopina V. B., Chernyshkov A. S. Sample geometry transformation for mechanical tests of constructional materials in an FDM structure. *iPolytech Journal*. 2022;26(3):386-400. (In Russ.). https://doi.org/10.21285/1814-3520-2022-3-386-400.

ВВЕДЕНИЕ

В настоящий момент на передовой высокотехнологичных производств находятся аддитивные технологии [1, 2]. Они представляют большой интерес для таких отраслей промышленности, как авиастроение, автомобилестроение, приборостроение, медицина и пр. Привлекательность данных технологий обусловлена главным образом возможностью создания деталей практически любой геометрической формы и размера при относительной простоте технологического процесса. Деталь послойно «выращивается» на 3d-принтере с помощью управляющей про-

граммы в соответствии с заданной цифровой моделью.

К числу наиболее популярных относится аддитивная технология, которую называют FDM-технология (метод послойного наплавления, от англ. fused deposition modeling). Ее популярность обусловлена сочетанием экономичности, доступности, простоты реализации и возможности совершенствовать технологичность изделия. В основе FDM-технологии или FDM-печати лежит экструзия материала⁴ [3–5], в результате которой формируется нить. Сопло экструдера, перемещаясь по заданной программой траектории,

Puc. 1. Модели внутренней структуры FDM-деталей Fig. 1. Models of the internal structure of FDM parts

⁴Виноградов В. М. Практикум по технологии переработки пластических масс: учеб. пособ. / под ред. В. М. Виноградова, Г. С. Головкина. М.: Изд-во «Химия», 1980. 240 с.

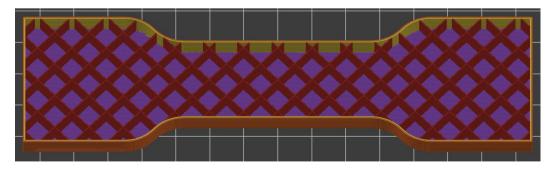
2022. T. 26. № 3. C. 386–400. 2022;26(3):386-400.

ISSN 2782-6341 (online)

укладывает нить слой за слоем в соответствующее 3d-модели изделие. При этом имеет место мезо- или макронесплошное заполнение объема детали (рис. 1).

В качестве материала используют термопластики в форме филамента. Линейка материалов непрестанно расширяется в сторону конструкционных материалов с высокими механическими характеристиками [6, 7]. Это обусловлено острой потребностью в создании по данной технологии несущих деталей.

Однако специфика FDM-технологии такова, что механические характеристики материала неравнозначны механическим характеристикам изделия [8]. В частности, на прочность изделия, помимо свойств материала, влияют следующие факторы: режим печати (скорость печати, скорость подачи материала, температурный режим и т.д.); шаблон печати; процент заполнения объема детали; толщина внешней оболочки, закрывающей FDM-структуру и образующей заданную для детали геометрию [9, 10]. Наряду с этим следует учитывать адгезионную прочность между слоями, образованными нитями печати, и между нитями в пределах слоя. В настоящее время отсутствует стройная теория анализа прочности изделий, выполненных с помощью FDM-печати, учитывающая все перечисленные факторы.


В частности, теоретические основы анализа прочности деталей, выполненных с применением вычитающих или формообразующих технологий, опираясь на гипотезу о сплошности материала, не учитывают любую

дискретность структуры, заполняющей объем детали⁵ [11, 12]. Следовательно, ими нельзя воспользоваться для корректного прочностного анализа FDM-детали. Можно предположить, что в некоторой мере FDM-структура представляет собой некую конструкцию, образованную нитями печати. И чем меньше процент заполнения, тем отчетливее это проявляется (рис. 2).

Теоретические основы оценки прочности изделий, выполненных с помощью традиционных технологий, во многом определены экспериментальными исследованиями. Испытания такого рода проводят в соответствии со стандартами, регламентирующими параметры образцов для соответствующих материалов, условия проведения испытаний этих образцов и анализ результатов испытаний. В основе анализа результатов эксперимента лежат соотношения, которые имеют силу в контексте гипотезы об однородности и сплошности материала. Например. чтобы построить условную диаграмму растяжения любого материала, нормальные напряжения определяют с помощью формулы вида:

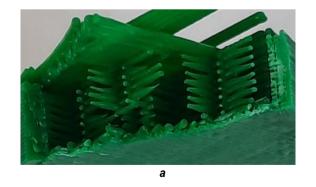
 $\sigma = N/A$.

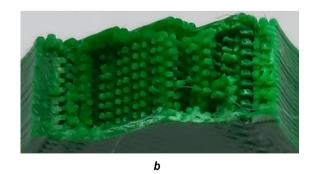
где σ — нормальные напряжения, действующие в поперечных сечениях рабочей части растянутого образца, МПа; N — продольная сила, действующая в поперечных сечениях рабочей части растянутого образца, H; A — величина площади поперечных сечений рабочей части образца до деформации, мм².

Puc. 2. 3d-модель шаблона печати «линии» с процентом заполнения объема детали 5% Fig. 2. 3d model of the "line" printing template with the 5% filling of the part volume

⁵Работнов Ю. Н. Механика деформируемого твердого тела: учеб. пособ. для вузов. 2-е изд., испр. М.: Изд-во «Наука», 1988. 712 с.

Путем экспериментов в настоящее время идут исследователи механических характеристик FDM-изделий. Как правило, суть таких исследований сводится к испытаниям FDM-образцов в условиях простых видов нагружения [13–21]. Наиболее распространено испытание образцов на растяжение. При простоте исполнения эксперимента гарантированы результаты, достоверно характеризующие механические характеристики исследуемой FDM-структуры из конкретного материала. Понятие «напряжение» в данных исследованиях отсутствует либо является условным.


ОПИСАНИЕ ПРОБЛЕМЫ


Образцы, выполненные с применением FDM-печати, испытывают на растяжение, используя по общеизвестным причинам станопределения ДЛЯ механических свойств пластмасс. Однако FDM-структура, формирующая образец, не соответствует модели сплошности материала, лежащей в основе формирования данных стандартов. Причем это несоответствие увеличивается по мере уменьшения процента заполнения, что сказывается на достоверности определения механических характеристик исследуемой FDM-структуры. Например, это актуально для образца типа 1А. геометрия которого регламентирована ГОСТ 11262-2017⁶ (размеры поперечного сечения 10×4), напечатанного шаблоном печати «линии» (рис. 3).

Шаблон «линии» (см. рис. 2) формируется параллельными, равномерно распределен-

ными по слою нитями печати. Направление нитей периодически меняется от слоя к слою на 90°. Слои «прикрепляются» друг к другу «точечно» в зонах контакта. По мере уменьшения процента заполнения сокращается число нитей печати в каждом слое, уменьшается число точек межслойного контакта. увеличиваются размеры сторон ячеек структуры (рис. 3). В частности, при заполнении 20% размеры ячеек становятся соизмеримы с высотой поперечного сечения рабочей части образца (см. рис. 3 а). Причем высота и ширина этого сечения, приходящиеся на FDM-структуру, сокращаются за счет толщины внешней оболочки. В этом случае становится значительным влияние внешней оболочки на работу структуры. Когда размеры ячеек одного порядка с толщиной нити печати. например, при заполнении 60% (см. рис. 3 b), влияние фактора внешней оболочки гаснет в пределах примыкающих к ним ячеек.

Следовательно, для оценки механических характеристик структур с невысоким процентом заполнения следует соответствующим образом масштабировать образцы. На данном этапе исследований в качестве базового принят шаблон печати «линии». Простота его геометрии обусловливает очевидность распределения силовых потоков и прочих сопутствующих параметров. Под невысоким процентом заполнения для этого шаблона в работе принято полагать величины порядка 50% заполнения и ниже.

Puc. 3. FDM-структура образца типа 1A, ГОСТ 11262-2017⁶: а – заполнение 20%; b – заполнение 60% Fig. 3. FDM-structure of 1A type sample, GOST 11262-2017⁶: а – 20% filling; b – 60% filling

⁶ГОСТ 11262-2017 (ISO 527-2:2012). Пластмассы. Метод испытания на растяжение (ISO 527-2:2012, Plastics − Determination of tensile properties − Part 2: Test conditions for moulding and extrusion plastics, MOD). М.: Изд-во «Стандартинформ», 2018.

Анализ стандартов для испытания пластмасс на растяжение позволил предположить, что наиболее подходящим для оценки механических характеристик FDM-структуры с невысоким процентом заполнения является образец типа 1, регламентированный ГОСТ 17370-2017 «Пластмассы ячеистые жесткие. Метод испытания на растяжение», рис. 4.

Геометрия такого образца учитывает регулярные мезо- и макронесплошности. значит, рабочая часть образца соответствующим образом масштабирована. При оценке механических характеристик таких материалов учитывается объемное соотношение газовой и полимерной фаз. Как правило, данные материалы имеют относительно равномерную ячеистую структуру, плотность которой в той или иной мере обеспечивается параметрами технологического процесса⁸. В некотором приближении структуру, заполняющую FDM-образец по шаблону «линии» с 50% заполнением и менее. можно считать эквивалентной ячеистой в рамках ГОСТ 17370-2017'.

Были проведены статические испытания FDM-образцов, изготовленных в соответствии с обозначенной геометрией (см. рис. 4). Образцы разрушились за пределами рабочей зоны. На рис. 5 представлены типичные разрушенные образцы, напечатанные

шаблоном «линии» с процентом заполнения 50%, с толщиной внешней оболочки 0,4 мм (см. рис. 5 *a*) и с толщиной внешней оболочки 0,8 мм (см. рис. 5 *b*). Материал филамента — термопластик PetG (полиэтилентерефталатгликоль). Диаметр филамента — 1,75 мм. Образцы были изготовлены на принтере Anycubic i3 Mega со средней скоростью печати 50 мм/с при температуре рабочего стола 90°С и температуре сопла 235°С.

Однако именно рабочая часть (длина 50 мм, см. рис. 4) растягиваемого образца является объектом исследования. Разрушение же образца происходит в зоне перехода между широкой частью образца для фиксации в захватах разрывной машины и рабочей частью образца. В пределах последней практически никаких изменений не наблюдается. Очевидно то, что зона перехода является концентратором напряжений. Однако требования ГОСТ 17370-2017⁷ к геометрии образцов априори должны исключать влияние данного фактора на поведение исследуемой области образца в ходе испытания. Напрашивается предположение о том, что в данном случае негативное влияние на характер распределения напряжений оказывает неучтенная ГОСТ 17370-2017[′] нитевидная структура FDM-печати. Имеет место наложение макро-и мезоконцентраторов напряжений.

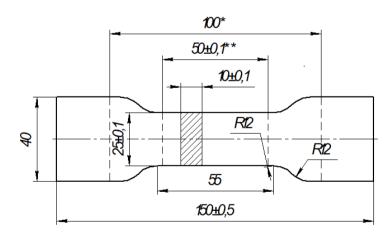


Рис. 4. Образец типа 1 для испытания ячеистых жестких пластмасс на растяжение Fig. 4. Type 1 sample for tensile testing of cellular rigid plastics

⁷ГОСТ 17370-2017 (ISO 1926:2009). Пластмассы ячеистые жесткие. Метод испытания на растяжение (ISO 1926:2009, Rigid cellular plastics – Determination of tensile properties, MOD). М.: Изд-во «Стандартинформ», 2018.
⁸Ярцев В. П., Андрианов К. А., Иванов Д. В. Физико-механические и технологические основы применения пенополистирола при дополнительном утеплении зданий и сооружений: учеб. пособ. Тамбов: Изд-во ГОУ ВПО ТГТУ, 2010. 120 с.

Puc. 5. Разрушенные FDM-образцы, напечатанные на 3d-принтере: а – толщина внешней оболочки 0,4 мм; b – толщина внешней оболочки 0,8 мм Fig. 5. Destroyed FDM samples printed on a 3d printer: a – outer shell thickness is 0.4 mm; b – outer shell thickness is 0.8 mm

Под макроконцентратором понимается галтель, под мезоконцентраторами – особенности FDM-структуры [23].

На рис. 6 *а* показан фрагмент 3d-модели зоны перехода в образце при заполнении в 50% и толщине внешней оболочки 0,8 мм. На рис. 6 *b* представлен фрагмент разрушенного образца. Натурные эксперименты показывают, что макротрещина начинает зарождаться во внешней боковой поверхности в зоне искривления траектории нити во внешней оболочке, рис. 6 *c*.

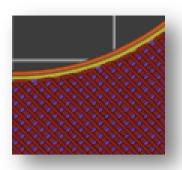
Несмотря на неудовлетворительные результаты испытаний образцов, решено в качестве прототипа оставить образец типа 1, ГОСТ 17370-2017 (см. рис. 4). Регулярность структуры, допускаемое соотношение объемов газовой и полимерной фаз ячеистой структуры [22] в сравнении с нитевидной структурой шаблона печати «линии» являются основанием для такого решения.

Чтобы сместить приоритет активности параметров напряженно-деформированного состояния в рабочую зону FDM-образца, требуется модификация геометрии за пределами его рабочей части с поправкой на специфику FDM-печати. На данном этапе разработки решено выполнять исследования, опираясь на феноменологический подход в контексте натурных испытаний образцов в сочетании с конечно-элементным (КЭ) анализом параметров напряженного состояния в авто-

матизированной среде на примере шаблона печати «линии».

ОСНОВНАЯ ЧАСТЬ

В действительности, при заполнении объема образца FDM-структурой в 50% (см. рис. 6 а) и менее (см. рис. 2, см. рис. 3 а) можно говорить о конструктивно-силовых схемах подкрепленных пластин и оболочек. Последние воспринимают значимую долю нагрузки. Эта доля зависит от процента заполнения детали при неизменной толщине оболочки. В частности, данный факт подтвердил численный эксперимент, описанный в работе [23].


Предположение о подкрепленных пластинах и оболочках, формирующих корпус FDM-образца, позволяет построить простую и информативную КЭ-ю модель образца, учитывающую только его корпус. Анализ такой модели способен показать общую тенденцию влияния геометрии образца (см. рис. 4) на характер распределения напряжений по корпусу. Эксперименты показали, что разрушение образцов начинается с боковой поверхности корпуса в зоне галтели (см. рис. 6 с).

Достаточно решить задачу в линейной постановке, а для анализа влияния достаточно информации о напряжениях Мизеса — эквивалентных напряжениях, определяемых в соответствии с энергетической гипотезой формоизменения Фон Мизеса:

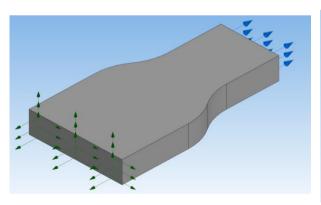
$$\sigma_{_{3KB}} = \frac{1}{\sqrt{2}} \sqrt{\left(\sigma_{x} - \sigma_{y}\right)^{2} + \left(\sigma_{y} - \sigma_{z}\right)^{2} + \left(\sigma_{z} - \sigma_{x}\right)^{2} + 6 \cdot \left(\tau_{xy}^{2} + \tau_{yz}^{2} + \tau_{zx}^{2}\right)},$$

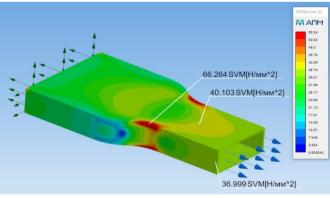
2022;26(3):386-400.

ISSN 2782-6341 (online)

Puc. 6. Область разрушения FDM-образца, напечатанного шаблоном «линии» с заполнением 50%: а – 3d-модель нитевидной структуры; b – разрушение в зоне перехода; с – начало разрушения
Fig. 6. The destruction area of the FDM sample printed with the "line" template with 50% filling: a – 3d model of the filamentory structure; b – destruction in the transition zone; c – destruction origin

где σ_x , σ_y , σ_z , τ_{xy} , τ_{yz} , τ_{zx} – компоненты тензора напряжений для рассматриваемой точки исследуемого объема детали.


Решение данной задачи осуществлялось в автоматизированной среде КЭ-го анализа модуля APM FEM (автоматизированное проектирование машин), интегрированного в CAD-программу КОМПАС-3D.


Прототипом для КЭ-й модели принят FDM-образец с постоянной толщиной корпуса 0,8 мм с 50% заполнением (см. рис. 5 *b*). Задана величина растягивающей нагрузки 2000 Н. Она обеспечивает нормальные напряжения в сечениях полой рабочей части образца в 36 МПа. Для модели образца принято значение модуля Юнга материала 2000 МПа. Данное значение модуля коррелируется с данными о

модуле Юнга для термопластика PetG, из которого изготовлены образцы.

В силу симметрии формы образца, симметрии его условий закрепления и нагружения для КЭ-го анализа была построена модель половины образца (рис. 7 а). Инструментарий модуля APM FEM выполняет КЭ-ю разбивку в автоматизированном режиме с возможностью уточнить размер КЭ.

По результатам КЭ-анализа получена картина распределения эквивалентных напряжений Мизеса, представленная на рис. 7 *b*. Локация очага напряжений на карте напряжений соответствует локации области, в которой начинается процесс разрушения FDM-образца в ходе натурного эксперимента (см. рис. 6 *c*).

Puc. 7. Модель образца с утолщением в автоматизированной среде КОМПАС-3D: а – модель для конечно-элементного анализа; b – карта напряжений Museca Fig. 7. Model of a sample with a thickening in COMPASS-3D automated environment: a – finite element analysis model; b – Mises stress map

Требуется усиление корпуса образца в слабой зоне. Очевиден тот факт, что наличие внешних галтелей в рассматриваемом образце не позволит сместить активность напряжений в рабочую часть образца. В связи с этим принято решение рассмотреть геометрию образца с постоянной шириной по всей длине, то есть форму прямоугольного параллелепипеда. С учетом технологических особенностей FDM-печати усиление образца в области захватов предложено обеспечивать за счет утолщения боковых стенок корпуса (рис. 8 а). На данном этапе для формирования технологической модели были приняты размеры внутренних утолщений стенок корпуса, представленные на рис. 8 b. Все толщины стенок корпуса заданы кратными принятой толщине одного прохода экструдера. Поэтому толщина стенки корпуса в рабочей части образца составляет 1,2 мм, то есть три прохода, каждый шириной по 0,4 мм. Иначе говоря, стенки корпуса рабочей части образца состоят из трех вертикальных слоев. Причем траектория укладки нити печати при формировании каждого вертикального слоя стенки идет по внешней геометрии образца (рис. 8 b). Значит, мезоконцентораторы, обусловленные изменением траектории, отсутствуют на внешнем контуре. Траектории укладки нити печати внутренних утолщений локализованы в областях зоны фиксации образца в захватах.

Важным параметром внутренней геометрии рассматриваемого FDM-образца являет-

ся радиус внутренней галтели R_{nepex} . Следует определить величину этого радиуса, при которой параметры напряженного состояния в окрестности галтели позволят получить приоритет восприятия растягивающей силы рабочей части образца. В качестве параметра напряженного состояния по-прежнему рассматриваются напряжения Мизеса.

Для решения данной задачи задействовано приложение «Оптимизация IOSO-К» системы КОМПАС-3D. В работе приложения «Оптимизация IOSO-К» использовался режим «Параметрия». Соответственно, применительно к рассматриваемому случаю, в качестве варьируемого параметра принят радиус галтели $R_{перех}$, мм (см. рис. 8 b), значит, выходным параметром является максимальная величина эквивалентных напряжений Мизеса $\sigma_{3квM}$ МПа.

Поскольку условия закрепления и условия нагружения модели образца остались прежними, процесс исследования, как и в предыдущем случае, осуществляется на модели половины образца (рис. 9 а). Внесено изменение в значение растягивающей нагрузки, поскольку толщина стенок корпуса рабочей части образца увеличилась с 0,8 мм до 1,2 мм. Для того чтобы напряжения в этой части модели не изменились по сравнению с моделью прототипа и составляли 36 МПа, значение нагрузки задано равным 2800 Н. На рис. 9 b приведена КЭ-я модель образца с глубиной просмотра 10%.

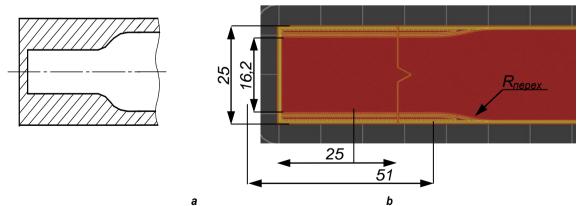
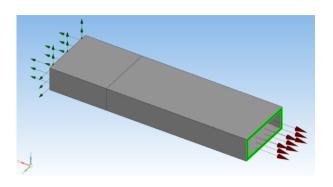
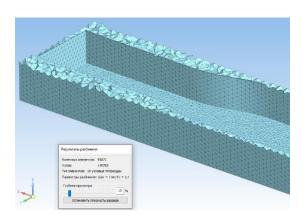
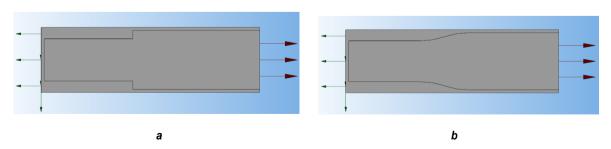




Рис. 8. Геометрия образца с внутренней галтелью в области перехода:
а – концептуальное представление геометрии образца без внешнего утолщения;
b – технологическая модель образца с внутренним утолщением в зоне захватов

Fig. 8. Geometry of the sample with an internal fillet in the transition area: a – conceptual representation of the sample geometry without external thickening; b – technological model of the sample with internal thickening in the gripping zone

ISSN 2782-6341 (online)

b


Рис. 9. Модель для конечно-элементного анализа образца в форме параллелепипеда:
а – 3d-модель с граничными условиями; b – KЭ-я модель
Fig. 9. Finite element analysis model for a parallelepiped sample:
a – 3d model with boundary conditions; b – finite element model

Диапазон значений варьируемого параметра 1 мм $\leq R_{nepex} \leq 30$ мм (рис. 10) с шагом 1 мм. Соответственно, количество итераций – 30. Выбор диапазона обусловлен особенностями FDM-печати, требованиями к размерам образца, возможностью получить функциональную зависимость, достаточную для рационального выбора значения R_{nepex} .

По результатам итерационного процесса получен массив данных, графическая интерпретация которого представлена на рис. 11 а. Она отчетливо показывает устойчивую тенденцию понижения максимальных значений напряжений с ростом значения радиуса галтели. Однако имеет место значительный разброс по точкам. В данном случае он обусловлен нестабильностью КЭ-й аппроксимации в зоне галтели при изменении значения радиуса галтели, возможностями автоматизированной САD-системы КОМПАС-3D.

Для получения стабильной зависимости данный массив точек был аппроксимирован

гладкой кривой. Возможности редактора Microsoft Office Excel позволили аппроксимировать массив точек полиномиальной кривой третьего порядка, для которой величина достоверности аппроксимации R² близка к единице (рис. 11 b). Повышение точности аппроксимирующей функции не имеет смысла, поскольку точность аппроксимируемых данных находится на уровне упрощенной математической модели. При этом тенденция изменения напряжений ясна. Кривая показывает стабильное сокращение максимального значения напряжений без асимптотического приближения к горизонтальной линии. То есть теоретически можно понизить напряжения до требуемого уровня, но при этом значительно увеличится радиус галтели. Увеличение радиуса приводит к увеличению продольного размера образца, что нежелательно. Одним из факторов, ограничивающих этот рост, являются технические возможности испытательной машины.

Puc. 10. Модели образца с предельными значениями радиуса галтели: $a - R_{nepex} = 1$ мм; $b - R_{nepex} = 30$ мм Fig. 10. Models of a sample with limiting values of the fillet radius: $a - R_{nepex} = 1$ mm; $b - R_{nepex} = 30$ mm

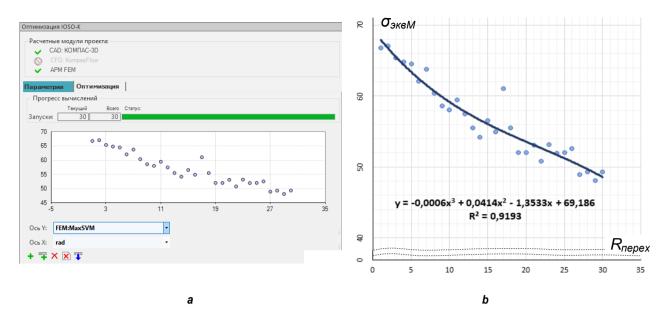


Рис. 11. Данные о зависимости σ_{эквМ} от R_{перех} по результатам параметрического анализа: а – информационное окно приложения «Оптимизация IOSO-К» по итогам анализа; b – аппроксимация данных гладкой зависимостью Fig. 11. Data on σ_{эквМ} dependence on R_{перех} by the parametric analysis results: a – information window of the "Optimization of IOSO-K" application according to the analysis results; b – data approximation by a smooth dependence

С учетом данных о зависимости $\sigma_{3кеМ}$ от $R_{перех}$ по результатам параметрического анализа (см. рис. 11 b), фактора влияния FDM-структуры на способность корпуса образца воспринимать растягивающую нагрузку (рис. 12), специфики технологии FDM-печати и отчасти профессиональной проницательности авторов приняты размеры и внутренняя геометрия разрабатываемого образца. Радиус галтели решено принять равным 22 мм, продольный размер образца — увеличить от 150 мм (образец-прототип, см. рис. 4) до 180 мм.

Тем самым становится больше длина рабочей части образца. Это обусловлено отсутствием полного понимания влияния граничных условий на поведение FDM-структуры в рабочей части под нагрузкой. Нет ясности относительно того, как в данном случае интерпретировать принцип Сен-Венана. Как правило, геометрия сплошных образцов разрабатывается с его учетом. Это отдельная задача, решение которой предусмотрено на следующем этапе исследования.

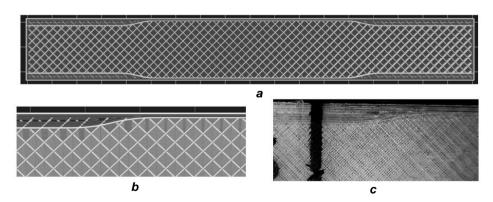
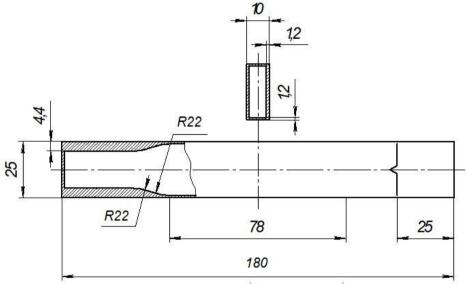


Рис. 12. Разработанный FDM-образец для испытаний на растяжение: а – вскрытая технологическая модель образца с заполнением 15%; b – фрагмент 3d-модели FDM-структуры образца в области внутренней галтели; c – фрагмент напечатанного образца в области внутренней галтели

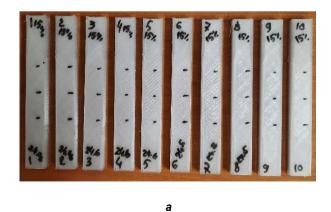
Fig. 12. Developed FDM sample for a tensile test: a – an opened technological model of the sample with 15% filling; b – a fragment of a 3d model of the FDM structure sample in the area of the inner fillet; c – a fragment of a printed sample in the area of the inner fillet

ISSN 2782-6341 (online)

По итогам проделанной работы построен эскиз корпуса FDM-образца, представленный на рис. 13.


В соответствии с данным эскизом, со сформированной на подготовительном этапе технологической моделью и изготовленным пробным FDM-образцом (см. рис. 12 *с*) была подготовлена серия из 10 образцов (рис. 14 *a*).

Испытания данных образцов показали устойчивый положительный результат. Разрушения всех образцов произошли в рабочей зоне (рис. 14 b). Иными словами, поставленная цель данного этапа разработки достигнута: удалось получить геометрические параметры FDM-образца для шаблона печати «линии» с заполнением 15%, обеспечиваю-


щие его корректное поведение при центральном растяжении. Безусловно, необходим анализ этой геометрии на предмет ее применимости ко всему указанному ранее диапазону значений невысокого процента заполнения, то есть от 50% и ниже. Предел «ниже» также подлежит уточнению.

ЗАКЛЮЧЕНИЕ

В результате проделанной работы геометрия и размеры образца-прототипа претерпели значительные изменения с поправкой на специфику FDM-печати. Данные изменения позволили скорректировать градиенты напряжений в зоне концентратора напряжений таким образом, чтобы обеспечить чистоту исследуемых процессов в рабочей зоне

Puc. 13. Эскиз корпуса разработанного FDM-образца Fig. 13. Design of the body of the developed FDM sample

b

Рис. 14. Образцы для испытаний на растяжение: а – образцы до испытаний; b – образцы после испытаний Fig. 14. Tensile test samples: a – pre-test samples; b – samples after testing

образца. Данный этап разработки FDMобразца с обозначенными параметрами посчитался завершенным, как только натурные испытания показали стабильно желаемый результат. В ходе работы была определена общая тенденция зависимости распределения силового потока по объему образца от сочетания траектории укладки нити печати с внутренней и внешней геометриями образца. Следующим этапом работы запланирована формализация полученных результатов. Требуется подвести обоснованную теоретическую базу, позволяющую увязать шаблон печати, процент заполнения, толщину внешней оболочки, параметры печати, характеристики материала филамента и геометрию образца.

Список источников

- 1. Nath S. D., Nilufar S. An Overview of additive manufacturing of polymers and associated composites // Polymers. 2020. Vol. 12. Iss. 11. P. 2719. https://doi.org/10.3390/polym12112719.
- 2. Петрова Г. Н., Ларионов С. А., Сорокин А. Е., Сапего Ю. А. Современные способы переработки термопластов // Труды ВИАМ. 2017. № 11. https://doi.org/10.18577/2307-6046-2017-0-11-7-7.
- 3. Weng Zixiang, Wang Jianlei, Senthil T., Wu Lixin. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing // Materials & Design. 2016. Vol. 102. P. 276–283. https://doi.org/10.1016/j.matdes.2016.04.045.
- 4. Divyathej M. V., Varun M., Rajeev P. Analysis of mechanical behavior of 3D printed ABS parts by experiments // International Journal of Scientific & Engineering Research. 2016. Vol. 7. Iss. 3. P. 116–124.
- 5. Сабсай О. Ю., Чалая Н. М. Технологические свойства термопластов (обзор) // Пластические массы. 1992. № 1. С. 5–13.
- 6. Hanaphy P. 3D Printing industry news sliced: Velo3D, Xerox, Weta Workshop, MyMiniFactory and more [Электронный ресурс]. URL: https://3dprintingindustry.com/news/3d-printing-industry-news-sliced-velo3d-xerox-weta-workshop-myminifactory-and-more-213448/ (08.02.2022).
- 7. Попадюк С. От протезов до оснастки: 3D-печать термопластами и композитами на их основе [Электронный ресурс]. URL: https://blog.iqb.ru/rec-thermoplastics-composites/?utm_source=getresponse&utm_medium=email (08.02.2022).
- 8. Raspopina V., Perelygina A., Shemetov L., Grigorov P. Dependence between the mechanical characteristics of the material and the FDM sample made from this material // Safety in Aviation and Space Technologies. Lecture Notes in Mechanical Engineering / eds. A. Bieliatynskyi, V. Breskich. Cham: Springer, 2022. P. 215–227. https://doi.org/10.1007/978-3-030-85057-9_18.
- 9. Anitha R., Arunachalam S., Radhakrishnan P. Critical parameters influencing the quality of prototypes in fused deposition modelling // Journal of Materials Processing Technology. 2001. Vol. 118. Iss. 1-3. P. 385–388. https://doi.org/10.1016/S0924-0136(01)00980-3.
- 10. Варнавский А. Н., Гадельшин А. Р., Салин Д. С. Исследование влияния показателей печати на качество и соотношение цена/качество результата изго-

- товления изделий на бюджетном 3d-принтере // Вестник Белгородского государственного технологического университета им. В. Г. Шухова. 2018. Т. 3. № 12. С. 124–131. https://doi.org/10.12737/article_5c1c9969a10128.83957539.
- 11. Sood A. K., Ohdar R. K., Mahapatra S. S. Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method // Materials & Design. 2009. Vol. 30. Iss. 10. P. 4243–4252. https://doi.org/10.1016/j.matdes.2009.04.030.
- 12. Кузьмин А. А., Яблокова М. А. Выбор допускаемых напряжений при расчете на прочность деталей из пластмасс // Современные наукоемкие технологии. 2016. № 8-2. С. 242–246.
- 13. Cantrell J., Rohde S., Damiani D., Gurnani R., DiSandro L., Anton J., et al. Experimental characterization of the mechanical properties of 3D printed ABS and polycarbonate parts // Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series / eds. S. Yoshida, L. Lamberti, C. Sciammarella. Cham: Springer, 2017. Vol. 3. P. 89–105. https://doi.org/10.1007/978-3-319-41600-7_11.
- 14. Tronvoll S. A., Welo T., Elverum C. W. The effects of voids on structural properties of fused deposition modelled parts: a probabilistic approach // The International Journal of Advanced Manufacturing Technology. 2018. Vol. 97. P. 3607–3618. https://doi.org/10.1007/s00170-018-2148-x.
- 15. Kovan V., Tezel T., Camurlu H. E., Topal E. S. Effect of printing parameters on mechanical properties of 3D printed PLA/carbon fibre compos // Materials Science. Non-Equilibrium Phase Transformations. 2018. Iss. 4. P. 126–128.
- 16. Yoojung Han, Jongjun Kim. A Study on the mechanical properties of knit fabric using 3D printing focused on PLA, TPU Filament- // Journal of Fashion Business. 2018. Vol. 22. Iss. 4. P. 93–105. https://doi.org/10.12940/ifb.2018.22.4.93.
- 17. Wu Wenzheng, Ye Wenli, Geng Peng, Wang Yulei, Li Guiwei, Hu Xue, et al. 3D printing of thermoplastic PI and interlayer bonding evaluation // Materials Letters. 2018. Vol. 229. P. 206–209. https://doi.org/10.1016/j.matlet.2018.07.020.
- 18. Wu Wenzheng, Geng Peng, Li Guiwei, Zhao Di, Zhang Haibo, Zhao Ji. Influence of layer thickness and raster angle on the mechanical properties of 3D-Printed

 2022;26(3):386-400.

ISSN 2782-6341 (online)

PEEK and a comparative mechanical study between PEEK and ABS // Materials. 2015. Vol. 8. Iss. 9. P. 5834–5846. https://doi.org/10.3390/ma8095271.

- 19. Huynh Nha Uyen, Smilo Jordan, Blourchian Aryan, Karapetian A. V., Youssef G. Property-map of epoxy-treated and as-printed polymeric additively manufactured materials // International Journal of Mechanical Sciences. 2020. Vol. 181. P. 105767. https://doi.org/10.1016/j.ijmecsci.2020.105767.
- 20. Avdeev A, Shvets A, Gushchin I, Torubarov I, Drobotov A, Makarov A, et al. Strength increasing additive manufacturing fused filament fabrication technology, based on spiral toolpath material deposition // Machines. 2019. Vol. 7. Iss. 3. P. 57. https://doi.org/10.3390/machines7030057.
- 21. Петров В. М., Безпальчук С. Н., Яковлев С. П. О влиянии структуры на прочность изделий из пласти-

ков, получаемых методом 3D-печати // Вестник Государственного университета и речного флота им. адмирала С. О. Макарова. 2017. Т. 9. № 4. С. 765–776. https://doi.org/1021821/2309-5180-2017-9-4-765-776.

- 22. Ni Fei, Wang Guangchun, Zhao Haibin. Fabrication of water-soluble poly(vinyl alcohol)-based composites with improved thermal behavior for potential three-dimensional printing application // Journal of Applied Polymer Science. 2017. Vol. 134. Iss. 24. https://doi.org/10.1002/app.44966.
- 23. Фролов Д. А., Гаврилова А. О., Распопина В. Б. Численный эксперимент: анализ напряженного состояния в характерных точках FDM-структуры // Безопасность колесных транспортных средств в условиях эксплуатации: материалы СХ Международной научнотехнической конференции (г. Иркутск, 2–4 июня 2021 г.). Иркутск: Изд-во ИРНИТУ, 2021. С. 160–167.

References

1. Nath S. D., Nilufar S. An overview of additive manufacturing of polymers and associated composites. *Polymers*. 2020;12(11):2719.

https://doi.org/10.3390/polym12112719.

- 2. Petrova G. N., Larionov S. A., Sorokin A. E., Sapego Yu. A. *Modern ways of processing of thermoplastics. Trudy VIAM = Proceedings of VIAM.* 2017;11. https://doi.org/10.18577/2307-6046-2017-0-11-7-7.
- 3. Weng Zixiang, Wang Jianlei, Senthil T., Wu Lixin. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. *Materials & Design.* 2016;102:276-283. https://doi.org/10.1016/j.matdes.2016.04.045.
- 4. Divyathej M. V., Varun M., Rajeev P. Analysis of mechanical behavior of 3D printed ABS parts by experiments. *International Journal of Scientific & Engineering Research*. 2016;7(3):116-124.
- 5. Sabsaj O. Yu., Chalaya N. M. Technological properties of thermoplastics (review). *Plasticheskie massy*. 1992;1:5-13. (In Russ.).
- 6. Hanaphy P. 3D Printing industry news sliced: Velo3D, Xerox, Weta Workshop, MyMiniFactory and more. Available from: https://3dprintingindustry.com/news/3d-printingindustry-news-sliced-velo3d-xerox-weta-workshop-

myminifactory-and-more-213448/ [Accessed 8th February 2022].

7. Popadyuk S. From prostheses to tooling: 3D printing with thermoplastics and thermoplastic composites. Available from: https://blog.iqb.ru/rec-thermoplastics-composites/?utm_source=getresponse&utm_medium=email [Accessed 8th February 2022].

- 8. Raspopina V., Perelygina A., Shemetov L., Grigorov P. Dependence between the mechanical characteristics of the material and the FDM sample made from this material. In: Bieliatynskyi A., Breskich V. (eds.). Safety in Aviation and Space Technologies. Lecture Notes in Mechanical Engineering. Cham: Springer; 2022, p. 215-227. https://doi.org/10.1007/978-3-030-85057-9_18.
- 9. Anitha R., Arunachalam S., Radhakrishnan P. Critical parameters influencing the quality of prototypes in fused deposition modelling. *Journal of Materials Processing Technology.* 2001;118(1-3):385-388.

https://doi.org/10.1016/S0924-0136(01)00980-3.

- 10. Varnavsky A. N., Gadelshin A. R., Salin D. S. The research of printing parameters impact on quality and price/quality ratio of the product's printing result on a budget 3D-printer. Vestnik Belgorodskogo gosudartekhnologicheskogo universiteta stvennogo V. G. Shuhova = Bulletin of BSTU named after V. G. Shu-2018;3(12):124-131. (In https://doi.org/10.12737/article 5c1c9969a10128.83957539. 11. Sood A. K., Ohdar R. K., Mahapatra S. S. Improving dimensional accuracy of fused deposition modelling grey processed part using Taguchi method. Materials Design. 2009;30(10):4243-4252. & https://doi.org/10.1016/j.matdes.2009.04.030.
- 12. Kuzmin A. A., Yablokova M. A. The selection of the allowable stress when calculating the strength of plastic part. Sovremennii naukoemkie tehnologii = Modern high technologies. 2016;8-2:242-246. (In Russ.).
- 13. Cantrell J., Rohde S., Damiani D., Gurnani R., DiSandro L., Anton J., et al. Experimental characterization of the mechanical properties of 3D printed ABS and polycarbonate parts. In: Yoshida S., Lamberti L., Sciammarella C. (eds.). Advancement of Optical Methods in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Cham: Springer; 2017, vol. 3, p. 89-105. https://doi.org/10.1007/978-3-319-41600-7_11.
- 14. Tronvoll S. A., Welo T., Elverum C. W. The effects of voids on structural properties of fused deposition modelled parts: a probabilistic approach. *The International Journal of Advanced Manufacturing Technology.* 2018;97:3607-3618. https://doi.org/10.1007/s00170-018-2148-x.
- 15. Kovan V., Tezel T., Camurlu H. E., Topal E. S. Effect of printing parameters on mechanical properties of 3D printed PLA/carbon fibre compos. *Materials Science. Non-Equilibrium Phase Transformations*. 2018;4:126-128.
- 16. Yoojung Han, Jongjun Kim. A study on the mechanical properties of knit fabric using 3D printing focused on PLA, TPU filament-. *Journal of Fashion Business*. 2018;22(4):93-105.

https://doi.org/10.12940/jfb.2018.22.4.93.

17. Wu Wenzheng, Ye Wenli, Geng Peng, Wang Yulei, Li

Guiwei, Hu Xue, et al. 3D printing of thermoplastic PI and interlayer bonding evaluation. *Materials Letters*. 2018;229:206-209.

https://doi.org/10.1016/j.matlet.2018.07.020.

18. Wu Wenzheng, Geng Peng, Li Guiwei, Zhao Di, Zhang Haibo, Zhao Ji. Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. *Materials*. 2015;8(9):5834-5846. https://doi.org/10.3390/ma8095271.

19. Huynh Nha Uyen, Smilo Jordan, Blourchian Aryan, Karapetian A. V., Youssef G. Property-map of epoxytreated and as-printed polymeric additively manufactured materials. *International Journal of Mechanical Sciences*. 2020;181:105767.

https://doi.org/10.1016/j.ijmecsci.2020.105767.

20. Avdeev A, Shvets A, Gushchin I, Torubarov I, Drobotov A, Makarov A, et al. Strength increasing additive manufacturing fused filament fabrication technology, based on spiral toolpath material deposition. *Machines*. 2019;7(3):57. https://doi.org/10.3390/machines7030057.

21. Petrov V. M., Bezpal'chuk S. N., Yakovlev S. P. 3D-printing from plastics: inner structure influence on the strength. *Vestnik Gosudarstvennogo universiteta i rechnogo flota imeni admirala S. O. Makarova*. 2017;9(4):765-776. https://doi.org/1021821/2309-5180-2017-9-4-765-776. 22. Ni Fei, Wang Guangchun, Zhao Haibin. Fabrication of water-soluble poly(vinyl alcohol)-based composites with improved thermal behavior for potential three-dimensional printing application. *Journal of Applied Polymer Science*. 2017;134(24). https://doi.org/10.1002/app.44966.

23. Frolov D. A., Gavrilova A. O., Raspopina V. B. Numerical experiment: analysis of the stress state at the characteristic points of the FDM structure. In: Bezopasnost' kolesnyh transportnyh sredstv v usloviyah ekspluatacii: materialy CX Mezhdunarodnoj nauchno-tekhnicheskoj konferencii = Safety of wheeled vehicles in operation: Proceedings of the 110th International Scientific and Technical Conference. 2–4 June 2021, Irkutsk. Irkutsk: Irkutsk National Research Technical University; 2021, p. 160-167. (In Russ.).

ИНФОРМАЦИЯ ОБ АВТОРАХ

Шеметов Лев Игоревич,

студент,

Иркутский национальный исследовательский технический университет, 664074, г. Иркутск, ул. Лермонтова, 83, Россия

Распопина Вера Борисовна,

кандидат технических наук, доцент, доцент кафедры самолетостроения и эксплуатации авиационной техники,

Иркутский национальный исследовательский технический университет,

664074, г. Иркутск, ул. Лермонтова, 83, Россия

Чернышков Антон Сергеевич,

аспирант,

Иркутский национальный исследовательский технический университет,

664074, г. Иркутск, ул. Лермонтова, 83, Россия

Вклад авторов

Шеметов Л. И. проводил натурные испытания и численные эксперименты в автоматизированной среде с последующим анализом и систематизацией выходных данных; формировал технологические модели.

Распопина В. Б. руководит проектом, осуществляла аналитику теоретической и экспериментальной базы; участвовала в проведении натурных экспериментов; систематизировала материал.

Чернышков А. С. осуществлял техническое обеспечение технологической составляющей исследования.

INFORMATION ABOUT THE AUTHORS

Lev I. Shemetov,

Student,

Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk 664074, Russia

Vera B. Raspopina,

Cand. Sci. (Eng.), Associate Professor, Associate Professor of the Department of Aircraft Engineering and Operation of Aviation Equipment, Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk 664074, Russia

Anton S. Chernyshkov,

Postgraduate Student, Irkutsk National Research Technical University, 83, Lermontov St., Irkutsk 664074, Russia

Contribution of the authors

Shemetov L.I. carried out field tests and numerical experiments in an automated environment with the following analysis and systematization of the output data, created technological models as well.

Raspopina V. B. was responsible for the management of the project, carried out the analysis of the theoretical and experimental base, participated in field experiments and organized the material.

Chernyshkov A. S. provided technical support for the technological component of the study.

2022;26(3):386-400.

ISSN 2782-6341 (online)

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Все авторы прочитали и одобрили окончательный вариант рукописи.

Информация о статье

Статья поступила в редакцию 01.08.2022; одобрена после рецензирования 31.08.2022; принята к публикации 26.09.2022.

Conflict of interests

The authors declare no conflict of interests.

The final manuscript has been read and approved by all the co-authors.

Information about the article

The article was submitted 01.08.2022; approved after reviewing 31.08.2022; accepted for publication 26.09.2022.