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Abstract. The objective of this paper is to analyze the stability of Hopfield neural networks with time-varying delay.
For the system to operate in a steady state, it is important to guarantee the stability of Hopfield neural networks with time -
varying delay. The Lyapunov-Krasovsky functional method is the main method for investigating the stability of time-
delayed systems. On the basis of this method, the stability of Hopfield neural networks with time-varying delay is ana-
lysed. It is known that due to such factors as communication time, limited switching speed of various active devices, time
delays often arise in various technical systems, which significantly degrade the performance of the system, which can in
turn lead to a complete loss of stability. In this regard, a Lyapunov-Krasovsky type delay-product functional was con-
structed in the paper, which allows more information about the time delay and reduces the conservatism of the method.
Then a generalized integral inequality based on the free matrix was used. A new criterion for asymptotic stability of Hop-
field neural networks with time-varying delay, which has less conservatism, was formulated. The effectiveness of the
proposed method is illustrated. Thus an asymptotic stability criterion for Hopfield neural networks with time-varying delay
was formulated and justified. The expanded Lyapunov-Krasovsky functional is constructed on the basis of delay and
quadratic multiplicative functional, and the derivative of the functional is defined by a matrix integral inequality with free
weights. The effectiveness of the method is illustrated by a model example.
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HoBbIn KpuTEpPUN AaCUMNTOTUYECKON YCTOMYMBOCTHU
HeMpPOHHbIX ceTen Xondunpa ¢ nepeMeHHbIM 3anas3abiBaHUEM

Baixy [0'=, daH Mio?

12 LlenmpanbHbil KOxHbIl yHUBEpcumem, e. Yanwa, Kumalickasi HapoOHas Pecrybnuka
! weiruguo@csu.edu.cn, http://orcid.org/0000-0002-7390-0400

2 csuliufang@csu.edu.cn, http://orcid.org/0000-0003-0750-8344

Pe3rome. Llenb — aHanu3 yCTONYMBOCTU HEMPOHHBIX ceTen Xondunga ¢ U3MeHSIoLWeNcs BO BPEMEHN 3a4epXKKOW.
[ns Toro ytobbl cuctemMa Morna pabotaTtb B YCTOWYMBOM COCTOSIHUM, BaXHO rapaHTMpOBaTb YCTOMYMBOCTb HEMPOHHbIX
ceTelt Xongunaa ¢ U3MEHSAIOLLENCA BO BpeMeHu 3adepxkon. Metoa dyHkuuoHana flanyHosa-Kpacosckoro siBnsercs
OCHOBHbIM MEeTOA0M UCCReaoBaHWs YCTOMYMBOCTM CUCTEM C BPEMEHHON 3adepxKoi. Ha ocHoBe AaHHOro MeTofa B pa-
60Te aHanuaMpyeTcs YCTONYMBOCTb HEMPOHHLIX ceTen Xondunaa ¢ U3MeHSIOLLeics BO BpEMEHU 3a4epKKoil. M3BeCTHO,
YTO M3-3a TaKMX (HAKTOPOB, KaK BPEMS CBS3W, OrpaHUYeHHast CKOPOCTb NEPEKMIOYEHNS PA3NNYHBIX aKTUBHbIX YCTPOICTB,
B Pa3NUYHbIX TEXHUYECKUX CUCTEMAX YACTO BO3HMKAIOT BPEMEHHBIE 3a4EPXKKM, KOTOPbIE CYLLECTBEHHO yXyawatoT pabo-
Ty CUCTEMbI, YTO MOXET B CBOI Ovepeb NPUBOAMUTL K MOMHOW NoTepe YCTONYMBOCTU. B cBS3M ¢ 3TUM B paboTe Obin
MocTpoeH yHKUMoHan JlsmyHoBa-KpacoBckoro Tuna «delay-producty, 4To no3BonsieT ucnonb3oBaTb Bonblie MHGOP-
MauuM 0 BPEMEHHOW 3a[lepPXKe U YMEHbLUaTb KOHCEpPBATU3M MeToda. 3atem Obino Mcnonb3oBaHo 0600LLEeHHOe MHTEe-
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rpanbHOe HepaBeHCTBO Ha OCHOBe CBOBOAHOW MaTpuubl. CHOpMynMpoBaH HOBbLIA KPUTEPWIA aCUMNTOTUYECKOW YCTO -
YMBOCTM HelpOHHbIX ceTei Xondunaa ¢ M3MEHSIIOLENCS BO BPEMEHU 3aepXKoW, KOTOpbii 0bnagaeT MEHbWMUM KO H-
cepBatuamom. MpounniocTpupoBaHa 3hdeKTUBHOCTL NPeanoXeHHOro MeToAa. Takum obpasom, B pabote copmynu-
poBaH M 06OCHOBAH KPUTEPWIA aCUMNTOTUYECKOW YCTOMYMBOCTM NSt HEMPOHHBIX ceTel Xondunga ¢ M3MeHsLencsa Bo
BPEMEHU 3aJepPXKoiA. IMpn 3TOM paclmpeHHbi dyHKunoHan JisnyHoBa-KpacoBckoro ctpoutcs Ha OCHOBe 3anasfbiBa-
HUS 1 KBagpaTUYHOTrO MyNbTUMNMKATUBHOMO (HyHKLMOHANA, a Npou3BoAHas (PyHKLWOHana onpeaensercs MaTpuyHbIM
MHTerpanbHbIM HepaBeHCTBOM CO CBOOOAHBIMKM Becamu. PPEKTUBHOCTL METoda WINMOCTPUPYETCA HAa MOAESbHOM

npumepe.

Knroyeebie cnoea: HelipoHHble ceTu Xondunga, acuMnToTUYeckas yCTOMYMBOCTb, MeToq (hyHKLMOHana JlanyHo-

Ba-Kpacosckoro

Ansa yumupoeaHus: o Banxy, Jllo ®aH. HoBbli KpUTEpWIl aCUMNTOTUYECKON YCTOMYMBOCTU HEWPOHHBLIX CETel

Xongunga ¢ nepemMeHHbIM 3anasgbiBaHuem  //
https://doi.org/10.21285/1814-3520-2021-6-753-761.

INTRODUCTION

It is well known that neural networks have
many applications in the area of signal
processing, pattern recognition etc. Hopfield
neural network is one kind of neural networks
given by J. J. Hopfield in 1982. In recent years,
Hopfield neural networks (HNNs) has attracted
an increasing attention since it has found many
applications in classification of patterns,
associative memory, image treatment, solving
optimization problems and other areas [1-6].
Especially, HNNs have been widely applicated
in power system. For example, HNNs can solve
the economic dispatch, which is a typical optimal
problem in power system, and give a proper
dispatch bringing great economic benefits.
What's more, in the electric power network
planning, HNNs can be used to select each load
node’s in-degree and direction of in-degree and
the structure of distribution can be also decided.
The problems of power flow can be solved by
HNNs in the same time. However, the time-
varying delay usually exists in the HNNs and it
has a negative influence on system
performance. It means the existence of time-
varying delay will make the performance of the
system to be worse and even make it instable.
Therefore, the stability analysis of HNNs is a hot
topic.

In the existing literature, the stability analysis
of HNNs is often based on time-invariant delays
or based on simple Lyapunov-Krasovskii
functional in [7-12]. However, the conclusions
are conservative due to the less information
about delays in the LKF. Therefore, this article
will analyze the stability of HNNs with
timevarying delays based on the augmented
Lyapunov-Krasovskii ~ functional with delay-
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product-type terms. [7] constructed a simple
LKF for HNNs with time-invariant time delays,
and obtained the stability criterion by using the
time-delay segmentation method. The more
time-delay  segments, the lower the
conservativeness, but the computational
complexity also increased. [8] constructed an
augmented LKF with more information about
delays for HNNs with time-varying delays, and
analyze its stability by the free weight matrix
method. It still has room to decrease the
conservativeness in terms of LKF construction
and processing of functional derivatives. In
terms of LKF construction, augmented LKF that
contain more information of delays has been
used widely. For example, [13] proposed two
new LKFs with delay-product-type terms. The
relationship between time delay and quadratic
terms is changed from simple addition to
multiplication. It can effectively reduce the
conservatism of the conclusion. On the other
hand, the derivative processing aspect of the
functional is mainly changed from the free
weight matrix method [14] to the integral
inequality method, such as Jensen inequality
[15], Wirtinger inequality [16], B-L inequality [17]
, auxiliary function-based integral inequalities
[18] and so on. The generalized free matrix
integral inequality proposed in [19], which is
based on Legendre series. By introducing some
free matrices, the integral term can be estimated
more tightly. Besides the two aspects mentioned
above, how to find the condition that guarantees
the negative definiteness of the derivative of
LKFs is also important, especially when the
derivative is a quadratic function with respect to
the time-varying delay. The sufficient condition
reported in [20] is commonly used but recently a
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relaxed quadratic function negative-
determination lemma is proposed in [21]. In this
lemma, an adjustable parameter is introduced
which  provides potential to reduce the
conservatism  without much computational
complexity.

In this paper, a suitable LKF is constructed
based on the delay and quadratic multiplication
LKF, and the derivative of the LKF is estimated
by the integral inequality method and a relaxed
quadratic ~ function  negative-determination
lemma is employed to obtain the asymptotic
stability criteria of HNNs. Finally, a numerical
example is given to demonstrate the advantages
and effectiveness of the proposed method.

Notation: The notation R" denotes the n-
dimensional Euclidean space; P >0 means that
the matrix P is positive definite; | and 0
represent an appropriately dimensioned identify
matrix and zero matrix respectively; * stands for
the symmetric term in the symmetric matrix; the
transpose and the inverse of a matrix are
denoted by the superscripts T and -1;

Sym{X}=X+X".

PROBLEM FORMULATION
Consider the following Hopfield neural
networks(HNNS):

y(t)=—Ay(t) +Bg(y(t-7))+u, 1)

wheredzDzdenotes the neuron state vector;
u=[u,u,,..ul" eR" is a constant input
vector; A=diag{a,,a,,..,a,} >0 is a diagonal

matrix; B is the delayed connection weight
matrix;

g(y() =[9(%: (), (¥ () 9V, (NI € R

is the neuron activation function: = is the time

ISSN 2782-4004 (print)

Let X" =[x,X,,...,x.]" be the equilibrium
point of system (1). By the transformation
y(+) = x(+)—x",we can simplify the equation
and the HNNs (1) is rewritten as:

X(t) =—Ax(t) +Bf (x(t—7)) | 3)

where
fi (% () = 9; (% () + XI*) -9 (Xi*)!i =12,..,n. (4)

By Assumption (1) and (4), it is easy to verify
that

v S hO= g

=0,vx;eR,j=12,..,n

The time-varying delay satisfies the following
condition:

O<zr<h0<7< (5)

Lemma 1: Given a positive integer [19] N,
an positive definite symmetric matrix ReR",
M, e R™™(i=0,1,2) and a vector £ € R", for
any continuous differentiable function, the
following inequality holds:

["% R

a

X(s)ds <

N

< Z[ZgNﬁN

mﬁ S CIMIR M)

delay. X (8) X (@), N =0
Assumption 1. The neuron activation ¢, =1 - : 1 -
function in system (1) for Vx,yeR and x=vy [x(B) x(a) ﬁ—aQO ﬂ_aQN—l] , N>0
satisfies the following condition: _
0,09~ 9,00 =t ' N=0
T, =
0=y shed=bzean @ T ) A5 AN >0
where L;(j=12,..,n) are positive constants. Q, :If L, (u)x(u)du
https://vestirgtu.elpub.ru 755
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0, iI>k+1

oerer(f )

Lemma 2: For a quadratic function [21]
f(y)=a,y*+ay+a,, f(y)<0 holds for y e[a, A] if
the following holds for any given x<[0,1]:

. {—(Zi +D(A- (=)%Y, i<k

f(a)<0

f(p) <0

—x’a,(f-a)’ + f(a)<0
~(-x)’8,(f-a) + f(B) <0

Lemma 3: Assuming that [22] (5) holds, then

NG

ASYMPTOTIC STABILITY CRITERIA

In this section, a new delay-dependent
asymptotic stability criterion for HNNs with time-
varying delay is derived.

Theorem 1: Given a fixed x<[0,1],h, 4,
U, , system (3) is asymptotically stable if there
exist symmetric matrix P >0(i=12,3),
Q >0(i=12,34), R>0, matrix
A=diag{4,4,...4,} >0,

S, =diag{sy,S;...5,) >0 (i=12) and any
matrix M, M, (i=0,12), such that the following
holds

(9)]ds <[p-a][f,(8

* ~hR
{Y(h,,,uc)JrY(Kh 11,) — 82a,h? hMFJ <0

*

where 1=1,2; ¢=12; h=0; h,=
h—

M=, 0=K; 0, =1-K;T=

)-f(2)].i=12,...n.

M, =col{M,;,M,;,M,,};
M, =col {M,,1-x)M,,xM, };
R =diag{R, 1—-x)R, xR},
R = diag{R,3R,5R};
& =[0ym s |+ Oprzpnds 1 =1,2,.,12;

=—Ae, +Be;

6
Y(z,7) = Y,(z,2) + X, () + Y3(£) + D X5
Y, (r) =Sym {HL R HZl}
+¢ 15, B, I, +7Sym {le P, sz}
~¢ 15 P [T, +7 Sym {Hla R st} ;

Y2 (T) = elT Qlel - (1_ i')e; QleZ +
+ (1-7)ejQ,e, —elQ.e;;

YS (T) = Hg Q3 Hs _(1_ f) HZ Q3 H4
+(1-7) HZ Q,I1, _H; QI

Y, = Sym{ej,Ae,|;

2
Y= hesTRes+ZSym{ngE1Tl<M1k +0; ElTkMzk};
k=0

Yo = Sym{elTers + elT LS.e,

_e1ToSle10 + e; LSZell - elTlszen};

a, =N, P,N, + Sym{N, R,IT,, |
~#N; PN, +Sym{N; P,IT,,}

d, =col{e,,e,,e,};

d, =col{e,,e}, d,=col{e;,e,};
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d, =col{e,,(1-7)e;, &}

d, =col{e, —(1-7)e,, e, —(1-7)e, —7e.};
d, =col{(1-7)e, —e,;,(1-7)e, —e, +7e,};
I, =col{d,,zd,,7d,}, I, =col{d,,d;,d,};
I1,, =col{d,,zd,}, I, =col{d,,d,};

I, =col{d,,7d,}, IT,;=col{d,,dg};

I, =col {e,,&,€,}, T, =col{e;e,e,};

I, =col {e,,e;,e,}, E,=[1,-1,0,0];

E,=[1,1,-21,0], E, =[1,-1,0,-61];
g, =col {e,,e,,6,—€; +2e, };
g, =col {e,,e,.e,,—€, +2¢e};

N, =col{0,0,0,d,}, N, =col{0,0,0,d.};

(1) = col{x(t), x(t — ), x(t — h),

L T@ds,jt j @dsde,
s [ TX(S’ dsdo
X(t— f),x(t—h),
f(x@®), f(x(t-7)), f (x(t—h))}

Proof: Consider the following LKF candi-
date:

VO=2 %0, ®

where

Vi (t) = ()R, (t) + 217, ()P, (t) +
+ (h—2)n; ()P, (1);

(SN 2782-4004 (print)
V0= x (5)Qx(s)ds;
V0 =] 7 (5)Qum,(s)ds;

V.0 =22 A f(5):

Vo) =" [ X (s)Rx(s)dsd;

and

m(t) = col{x(t), x(t - ), x(t ~h),
f X(8) gs. j: r j; X(3) gsde,

T T

. TX(S> s, 7] TX(S)d s}

17,(t) = col{x(t), x(t — 7). x(t - h),
[ @ds,r j‘&f’)dsde};
t-r t-zJ6 T

n,(t) = col{x(t), x(t —7), x(t — h),
J-I r x(s) J-t_r'[t r x(s) ds dH}

and  P>0(i=123), Q >0(i=1234),
R>0, A>0 which shows V(t)Zg||x||2 for a

sufficient small &> 0.
Then calculating the derivatives of V(t)

defined in (9) and the derivatives of
Vi (t) (i=12,...,5) are given by

Vi (t) = 277 (1R (1) + 7773 (1) Py, (1) +
+2zn7; ()P, () —2m3 P, () +  (9)
+2717; (t) Py (t) = ET (1) Y, (7, 7) E(1).

V,(0) =X ()Qx(s) - X' (t-7)(Q~Q,)
X(t-7)-Qx(t-h)=¢" (t){e Qe —€;Qe, (10)
+6,Q,8, -8 Qe }e(t) =& (O, (7)S().

https://vestirgtu.elpub.ru
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Va(t) =, Q7. () - 713 (- 7)(Qs —Qu)
m,(t=7) =, (t=h)Qun, (t—h)
=& (O Q I, -T1 Qs T,
+1T; Q, TT, 115 Q, TIsX (M)
=S OB,

(11)

\/'4 t=2f T (x(t))Ax(t)
= &7 (t)Sym{efAe, | £(t)
=&ET()Y,E().

(12)

V,(0) = R - [ X" (ORx@B)ds.  (13)

Based on lemma 1, Lih X" (t)Rx(t)ds with
R > 0 can be estimated as:

[ ORK®ds = i (ORi(t)ds -

[ X ORI < Y12¢ OEIM, )

T

2k +1
#3126 OB M ()

T
2k +1

-£10] 3 om{glELM, +o[ERM, |+ Tt

+—— T (OMER M ()]

+

E (MR M, £(1)]

where

£,®) = col{x(t — ), x(t—h), = [ x(s)ds,
7 Jton

1 t-r 2 t—r pt-t .
=], X()ds+ = L_h j x(s)dsdu};

T Jt=h

£,(6) = coHx(®), x(t-2), = [ x(s)ds,
Tttt
1

t 2 ptoet
~ X(s)ds + j j x(u)duds}.

758

Therefore,

V) <&TO{Ys+ Y0 (149)

For matrices S =diag{sy,s;....5,}>0

(i=1,2), the following hold by using lemma 3:

0<2x" (t)LS, f (x(t))—2fT (x(t))S, f (x(t))
+2xX" (t—7)LS, f (x(t-7))
27 (X(t-1))S, T (x(t-7))
=& (O)Y5(0).

(15)

It follows from (10)—(16) that
V()< )(Y(@)+Ys)Et) =a(z). (16)

It is found that @(z,7) is a quadratic

function. Thus, based on lemma 2, the following
holds:

@(0,0)<0

@(h,0)<0

—x*a,h* +@(0,0) <0
—(1-«x)*a,h*+a@(h,0)<0

; (17)

@(0,1)<0

@(h,u) <0

—x’a,h’ +@ (0, 1) <0
~(1-x)*a,h*+a@(h, 1) <0

(18)

It follows that (18),(19) = (7),(8) by using
Schur complement. This completes the proof.
NUMERICAL EXAMPLES

In this section, a numerical example is given
to demonstrate the effectiveness and
advantages of the proposed method.

Example 1: Consider the following HNN (3)
with time-varying delay (6):

08 0 0.1 0.3
A: y B = y
{ 0 5.3} {0.9 0.1}

https://vestirgtu.elpub.ru
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Lot 0 0.9
Tlo o1 AT

By the Theorem 1 of this paper, the
maximum delay h that guarantees the
asymptotic stability of HNN (3) is 51.3012 while
it is 14.660 in [8]. So our result is less
conservative.

— (1)

- .xz(t)

x(t)

05} N

———

05H
]

Time (s)

State trajectories of the system of Example 1
Tpaekmopuu cocmosiHull cucmeMbl npumepa 1

ISSN 2782-4004 (print)

Setting

X(0) =col{2,-1} r =0.9sint +50.4012
f (x) =col{tanh (x,(t)), tanh (x,(t) )} .

The responses of the HNN (3) with a time-
varying delay when x=0.9,h=51.3012 are

shown in the figure above. The result indicates
that the system is stable at its equilibrium points,
which verifies the effectiveness of the proposed
method.

CONCLUSION

In this paper, an augmented functional is
constructed based on the delay and quadratic
multiplicative functional, and the derivative of the
functional is defined by the free-weight matrix
integral inequality. We choose the relaxed quad-
ratic function negative-determination lemma to
deal with the quadratic function and obtain the
stability criterion. Finally, a numerical example is
given to prove the effectiveness and advantages
of the proposed method in this paper.
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